Magnetotropism

Last updated

Magnetotropism is the movement or plant growth in response to the stimulus provided by the magnetic field in plants (specifically agricultural plants) around the world. As a natural environmental factor in the Earth, variations of magnetic field level causes many biological effects, including germination rate, flowering time, photosynthesis, biomass accumulation, activation of cryptochrome, and shoot growth. [1]

Contents

Biological effects

As an adaptive behavior, magnetotropism is recognizing as a method to improve agriculture success, using the well-studied plant model, Arabidopsis thaliana, a typical small plant which is native in the Europe and Asia with well-known genomic functions. In 2012, Xu et al. conducted a Near-Null Magnetic Field experiment under white light and long-day conditions using the homemade equipment of combining three couples of Helmholtz coils in vertical, north–south, east–west direction compensating near-null magnetic field. Xu noted that under the near-null magnetic field, Arabidopsis thaliana delays the flowering time by altering the transcription level of three cryptochrome related florigen genes:PHYB, CO, and FT; Arabidopsis thaliana also induced longer hypocotyl length under white light in the Near-Null magnetic field compared to standard geomagnetic field and either dark or white light conditions. [2] Furthermore, the biomass accumulation reduces in the near-null magnetic field while Arabidopsis thaliana switches from vegetative growth to reproductive growth. [3] Not until recently, Agliassa conducted a similar experiment continuing Xu et al. ’s discovery found out that Arabidopsis thaliana delay flowering by shortening stem length and reduction of leaf size. This expression shows that the near-null magnetic field has caused downregulation of several flowering genes, including FT genes in the meristem and leaves, which is cryptochrome related. [4]

Physiological mechanism

Although preliminary experiments have shown a wide range of effects due to the magnetic field, the mechanism has not yet been elucidated. Having known that the delay of flowering is downregulating in cryptochrome related genes affected by the near-null magnetic field under blue light, cryptochrome is taking as a potential magneto-sensor by a few considerations. Based on the radical pair model, cryptochrome would be the magneto-sensor in the light-dependent magnetoreception since cryptochrome has evolved a significant role of plant behavior, including blue-light reception and regulation, de-etiolation, circadian rhythm, and photolyase. [5] In the photoactivation process, blue light hits cryptochrome and accepts a photon to Flavin while tryptophan receives a photon by another tryptophan donor simultaneously. Due to the geomagnetic field, this combination would rotate from south pole to north pole of the Earth and convert the two single photons back to its inactive resting states under aerobic environment. [6] Based on a few behavior changes due to variations of the magnetic field, many plant scientists have paid attention to cryptochrome being the candidate for the magneto-sensory receptor. So far, the interactions between signals and magnetoreceptor molecules have not yet discovered, thus leaving potential space for future research while understanding magnetotropism would be significant for improving life forms and ecology such as agriculture.

Related Research Articles

<i>Arabidopsis thaliana</i> Model plant species in the family Brassicaceae

Arabidopsis thaliana, the thale cress, mouse-ear cress or arabidopsis, is a small plant from the mustard family (Brassicaceae), native to Eurasia and Africa. Commonly found along the shoulders of roads and in disturbed land, it is generally considered a weed.

<span class="mw-page-title-main">Phytochrome</span> Protein used by plants, bacteria and fungi to detect light

Phytochromes are a class of photoreceptor proteins found in plants, bacteria and fungi. They respond to light in the red and far-red regions of the visible spectrum and can be classed as either Type I, which are activated by far-red light, or Type II that are activated by red light. Recent advances have suggested that phytochromes also act as temperature sensors, as warmer temperatures enhance their de-activation. All of these factors contribute to the plant's ability to germinate.

<span class="mw-page-title-main">Thigmotropism</span> Directed growth of plants in response to touch

In plant biology, thigmotropism is a directional growth movement which occurs as a mechanosensory response to a touch stimulus. Thigmotropism is typically found in twining plants and tendrils, however plant biologists have also found thigmotropic responses in flowering plants and fungi. This behavior occurs due to unilateral growth inhibition. That is, the growth rate on the side of the stem which is being touched is slower than on the side opposite the touch. The resultant growth pattern is to attach and sometimes curl around the object which is touching the plant. However, flowering plants have also been observed to move or grow their sex organs toward a pollinator that lands on the flower, as in Portulaca grandiflora.

<span class="mw-page-title-main">Gravitropism</span> Plant growth in reaction to gravity

Gravitropism is a coordinated process of differential growth by a plant in response to gravity pulling on it. It also occurs in fungi. Gravity can be either "artificial gravity" or natural gravity. It is a general feature of all higher and many lower plants as well as other organisms. Charles Darwin was one of the first to scientifically document that roots show positive gravitropism and stems show negative gravitropism. That is, roots grow in the direction of gravitational pull and stems grow in the opposite direction. This behavior can be easily demonstrated with any potted plant. When laid onto its side, the growing parts of the stem begin to display negative gravitropism, growing upwards. Herbaceous (non-woody) stems are capable of a degree of actual bending, but most of the redirected movement occurs as a consequence of root or stem growth outside. The mechanism is based on the Cholodny–Went model which was proposed in 1927, and has since been modified. Although the model has been criticized and continues to be refined, it has largely stood the test of time.

<span class="mw-page-title-main">Magnetoreception</span> Biological ability to perceive magnetic fields

Magnetoreception is a sense which allows an organism to detect the Earth's magnetic field. Animals with this sense include some arthropods, molluscs, and vertebrates. The sense is mainly used for orientation and navigation, but it may help some animals to form regional maps. Experiments on migratory birds provide evidence that they make use of a cryptochrome protein in the eye, relying on the quantum radical pair mechanism to perceive magnetic fields. This effect is extremely sensitive to weak magnetic fields, and readily disturbed by radio-frequency interference, unlike a conventional iron compass.

In developmental biology, photomorphogenesis is light-mediated development, where plant growth patterns respond to the light spectrum. This is a completely separate process from photosynthesis where light is used as a source of energy. Phytochromes, cryptochromes, and phototropins are photochromic sensory receptors that restrict the photomorphogenic effect of light to the UV-A, UV-B, blue, and red portions of the electromagnetic spectrum.

Shade avoidance is a set of responses that plants display when they are subjected to the shade of another plant. It often includes elongation, altered flowering time, increased apical dominance and altered partitioning of resources. This set of responses is collectively called the shade-avoidance syndrome (SAS).

<span class="mw-page-title-main">Cryptochrome</span> Class of photoreceptors in plants and animals

Cryptochromes are a class of flavoproteins found in plants and animals that are sensitive to blue light. They are involved in the circadian rhythms and the sensing of magnetic fields in a number of species. The name cryptochrome was proposed as a portmanteau combining the chromatic nature of the photoreceptor, and the cryptogamic organisms on which many blue-light studies were carried out.

<span class="mw-page-title-main">Photolyase</span> Class of enzymes

Photolyases are DNA repair enzymes that repair damage caused by exposure to ultraviolet light. These enzymes require visible light both for their own activation and for the actual DNA repair. The DNA repair mechanism involving photolyases is called photoreactivation. They mainly convert pyrimidine dimers into a normal pair of pyrimidine bases.

<span class="mw-page-title-main">Primordium</span> Organ in the earliest recognizable stage of embryonic development

A primordium in embryology, is an organ or tissue in its earliest recognizable stage of development. Cells of the primordium are called primordial cells. A primordium is the simplest set of cells capable of triggering growth of the would-be organ and the initial foundation from which an organ is able to grow. In flowering plants, a floral primordium gives rise to a flower.

The repressilator is a genetic regulatory network consisting of at least one feedback loop with at least three genes, each expressing a protein that represses the next gene in the loop. In biological research, repressilators have been used to build cellular models and understand cell function. There are both artificial and naturally-occurring repressilators. Recently, the naturally-occurring repressilator clock gene circuit in Arabidopsis thaliana and mammalian systems have been studied.

<span class="mw-page-title-main">Karrikin</span> A plant growth regulator

Karrikins are a group of plant growth regulators found in the smoke of burning plant material. Karrikins help stimulate seed germination and plant development because they mimic a signaling hormone known as strigolactone. Strigolactones are hormones that help increase growth of symbiotic arbuscular mycorrhizal fungi in the soil, which enhances plant growth and leads to an increase in plant branching.

<span class="mw-page-title-main">Phototropism</span> Growth of a plant in response to a light stimulus

In biology, phototropism is the growth of an organism in response to a light stimulus. Phototropism is most often observed in plants, but can also occur in other organisms such as fungi. The cells on the plant that are farthest from the light contain a hormone called auxin that reacts when phototropism occurs. This causes the plant to have elongated cells on the furthest side from the light. Phototropism is one of the many plant tropisms, or movements, which respond to external stimuli. Growth towards a light source is called positive phototropism, while growth away from light is called negative phototropism. Negative phototropism is not to be confused with skototropism, which is defined as the growth towards darkness, whereas negative phototropism can refer to either the growth away from a light source or towards the darkness. Most plant shoots exhibit positive phototropism, and rearrange their chloroplasts in the leaves to maximize photosynthetic energy and promote growth. Some vine shoot tips exhibit negative phototropism, which allows them to grow towards dark, solid objects and climb them. The combination of phototropism and gravitropism allow plants to grow in the correct direction.

In molecular biology mir-398 microRNA is a short RNA molecule. MicroRNAs function to regulate the expression levels of other genes by several mechanisms.

Circadian Clock Associated 1 (CCA1) is a gene that is central to the circadian oscillator of angiosperms. It was first identified in Arabidopsis thaliana in 1993. CCA1 interacts with LHY and TOC1 to form the core of the oscillator system. CCA1 expression peaks at dawn. Loss of CCA1 function leads to a shortened period in the expression of many other genes.

Steve A. Kay is a British-born chronobiologist who mainly works in the United States. Dr. Kay has pioneered methods to monitor daily gene expression in real time and characterized circadian gene expression in plants, flies and mammals. In 2014, Steve Kay celebrated 25 years of successful chronobiology research at the Kaylab 25 Symposium, joined by over one hundred researchers with whom he had collaborated with or mentored. Dr. Kay, a member of the National Academy of Sciences, U.S.A., briefly served as president of The Scripps Research Institute. and is currently a professor at the University of Southern California. He also served on the Life Sciences jury for the Infosys Prize in 2011.

LUX or Phytoclock1 (PCL1) is a gene that codes for LUX ARRHYTHMO, a protein necessary for circadian rhythms in Arabidopsis thaliana. LUX protein associates with Early Flowering 3 (ELF3) and Early Flowering 4 (ELF4) to form the Evening Complex (EC), a core component of the Arabidopsis repressilator model of the plant circadian clock. The LUX protein functions as a transcription factor that negatively regulates Pseudo-Response Regulator 9 (PRR9), a core gene of the Midday Complex, another component of the Arabidopsis repressilator model. LUX is also associated with circadian control of hypocotyl growth factor genes PHYTOCHROME INTERACTING FACTOR 4 (PIF4) and PHYTOCHROME INTERACTING FACTOR 5 (PIF5).

Pseudo-response regulator (PRR) refers to a group of genes that regulate the circadian oscillator in plants. There are four primary PRR proteins that perform the majority of interactions with other proteins within the circadian oscillator, and another (PRR3) that has limited function. These genes are all paralogs of each other, and all repress the transcription of Circadian Clock Associated 1 (CCA1) and Late Elongated Hypocotyl (LHY) at various times throughout the day. The expression of PRR9, PRR7, PRR5 and TOC1/PRR1 peak around morning, mid-day, afternoon and evening, respectively. As a group, these genes are one part of the three-part repressilator system that governs the biological clock in plants.

Dmitri Nusinow is an American chronobiologist who studies plant circadian rhythms. He was born on November 7, 1976, in Inglewood, California. He currently resides in St. Louis, and his research focus includes a combination of molecular, biochemical, genetic, genomic, and proteomic tools to discover the molecular connections between signaling networks, circadian oscillators, and specific outputs. By combining these methods, he hopes to apply the knowledge elucidated from the Arabidopsis model to other plant species.

EARLY FLOWERING 3 (ELF3) is a plant-specific gene that encodes the hydroxyproline-rich glycoprotein and is required for the function of the circadian clock. ELF3 is one of the three components that make up the Evening Complex (EC) within the plant circadian clock, in which all three components reach peak gene expression and protein levels at dusk. ELF3 serves as a scaffold to bind EARLY FLOWERING 4 (ELF4) and LUX ARRHYTHMO (LUX), two other components of the EC, and functions to control photoperiod sensitivity in plants. ELF3 also plays an important role in temperature and light input within plants for circadian clock entrainment. Additionally, it plays roles in light and temperature signaling that are independent from its role in the EC.

References

  1. Maffei, Massimo (4 September 2014). "Magnetic field effects on plant growth, development, and evolution". Frontiers in Plant Science. 5: 445. doi: 10.3389/fpls.2014.00445 . PMC   4154392 . PMID   25237317.
  2. Xu, Chunxiao (1 March 2012). "A near-null magnetic field affects cryptochrome-related hypocotyl growth and flowering in Arabidopsis". Advances in Space Research. 49 (5): 834–840. Bibcode:2012AdSpR..49..834X. doi:10.1016/j.asr.2011.12.004.
  3. Xu, Chunxiao (September 2013). "Removal of the local geomagnetic field affects reproductive growth in Arabidopsis". Bioelectromagnetics. 34 (6): 437–442. doi: 10.1002/bem.21788 . PMID   23568853 . Retrieved 6 June 2019.
  4. Agliassa, Chiara (July 2018). "Reduction of the geomagnetic field delays Arabidopsis thaliana flowering time through downregulation of flowering‐related genes". Bioelectromagnetics. 39 (5): 361–374. doi:10.1002/bem.22123. PMC   6032911 . PMID   29709075.
  5. Vanderstraeten, Jacques (14 February 2018). "Low-Light Dependence of the Magnetic Field Effect on Cryptochromes: Possible Relevance to Plant Ecology". Frontiers in Plant Science. 9: 121. doi: 10.3389/fpls.2018.00121 . PMC   5817061 . PMID   29491873.
  6. Maeda, Kiminori (27 March 2012). "Magnetically sensitive light-induced reactions in cryptochrome are consistent with its proposed role as a magnetoreceptor". Proc Natl Acad Sci U S A. 109 (13): 4774–9. Bibcode:2012PNAS..109.4774M. doi: 10.1073/pnas.1118959109 . PMC   3323948 . PMID   22421133.