"Man-Computer Symbiosis" is the title of a work by J. C. R. Licklider, which was published in 1960. [1] [2] [3] The paper represented what we would today consider a fundamental, or key text of the modern computing revolution. [4]
The work describes something of Licklider's vision for a complementary ("symbiotic") relationship between humans and computers at a potential time in the future. According to Bardini, Licklider envisioned a future time when machine cognition ("cerebration") would surpass and become independent of human direction, as a basic stage of development within human evolution. [5] Jacucci et al. describe Licklider's vision as being the very tight coupling of human brains and computing machines. [3]
As a necessary pre-requisite of human-computer symbiosis, Licklider conceived of a "thinking center", [2] incorporating the functions of libraries with new developments in information technology, and connected to other such centers through computer networks. [6] [7]
Streeter identifies the main empirical element of the work as the time and motion analysis, which is shown under Part 3 of the work. [4] In addition he identified two reasons for Licklider to have considered such a symbiotic human computer relationship to be beneficial: firstly, that it might bring about an advantage emerging from the use of a computer, such that there are similarities with the necessary methodology of such a use (i.e. trial and error), to the methodology of problem solving through play, and secondarily, because of the advantage which results from using computers in battle situations. [4] Foster states Licklider sought to promote computer use in order to "augment human intellect by freeing it from mundane tasks". [8]
Streeter considers Licklider to be positing an escape from the limitations of the mode of computer use during his time, which was batch processing. [4] Russell thinks Licklider was stimulated by an encounter with the newly developed PDP-1. [9]
The work shows the following contents: [2]
Part 1 is titled Introduction and has 2 sub-headings, "Symbiosis" (part 1.1) and "Between 'Mechanically Extended Man' and 'Artificial Intelligence'" (part 1.2).
Part 1.1 begins by showing a definition of the term symbiosis using the illustration of the relationship between two organisms, a fig-tree, and its pollinator, a type of fig-wasp. [10] [11] The article continues to sub-classify the concept of a symbiotic relationship between humans and computers within the overall relationship between men and machines generally (man-machine systems), and outlines the intentions of its author in the possibility within the future of a relationship for the benefit of human thinking.
Part 1.2 references J. D. North's "The rational behavior of mechanically extended man" [12] to begin a brief discussion on "mechanically extended man" and proceeds to include developments and future developments within artificial intelligence.
Part 2 is titled "Aims of Man-Computer Symbiosis".
Licklider opens with the notion that the function of present-day computers is to solve pre-formulated problems, and suggests that, while the act of programming forces one to discipline and clearly articulate their thought process, the complexity of particular problems may indeed become an arduous task. Problems of this type are suggested to be solved both easier and faster “through an intuitively guided trial-and-error procedure in which the computer cooperated, turning up flaws in the reasoning or revealing unexpected turns in the solution.” Licklider goes on to reference the Henri Poincaré quote of “the question is not “what is the answer?”. The question is “what is the question?”. Further, Licklider outlines two primary aims of man-computer symbiosis: the first of which being “to bring the computing machine effectively into the formulation parts of technical problems”; the second being “to bring computing machines effectively into processes of thinking that must go on in “real time”, time that moves too fast to use computers in conventional ways”. Licklider closes with the statement of, in order to reach comparable human-computer interaction to that between two colleagues, far greater coupling between machine and man will be required than is currently technologically feasible.
Part 3 is titled "Need for Computer Participation in Formulative and Real-Time Thinking" and begins by continuing from a preceding statement on the likelihood of data-processing machines improving human thinking and problem solving. This part proceeds to an outline of an investigation sub-headed "A Preliminary and Informal Time-and-Motion Analysis of Technical Thinking", in which Licklider investigated his own activities during the spring and summer of 1957. This discussion includes a statement on the currently understood definition of the term computer, as "a wide class of calculating, data-processing, and information-storage-and-retrieval machines". Licklider begins a comparison between the so-called "genotypic" similarities between humans and computers, in the seventh passage of this part, with a definition of humans as:
noisy, narrow-band devices, but their nervous systems have very many parallel and simultaneously active channels
and ends with the acknowledgement of differences between inherent processing speed and use of language.
Part 4 is titled "Separable Functions of Men and Computers in the Anticipated Symbiotic Association". Licklider in the first passage of this part makes reference to the SAGE system. The text continues to identify ways in which theoretically active computers would function in ways including: to interpolate, extrapolate, convert static equations or logical statements into dynamic models. The part concludes with a statement of the functioning of a potential computer as performing diagnosis, pattern-matching, and relevance-recognizing.
Part 5 is the final part of the article and is titled "Prerequisites for Realization of Man-Computer Symbiosis". It has five sub-headings:
Part 5.3. mentions the concept of trie memory. [13]
Part 5.4. begins initially by surveying the differences between human language and computer language, mentioning as examples of the latter: FORTRAN; the "Information Processing Language" of Cliff Shaw, Allen Newell, Herbert A. Simon, and T. O. Ellis; [14] and ALGOL "and related systems". Licklider says:
instructions directed to computers specify courses; instructions-directed to human beings specify goals.
Licklider says that a challenge is to program computers to devise their own procedures for achieving human-specified goals.
Part 5.5 ends with a discussion of equipment for "more effective, immediate man-machine communication than can be achieved with an electric typewriter", including desk-surface display and control, large wall display, and automatic speech production and recognition.
At the time, acoustics represented one way a number of budding computer scientists entered the field. The work references 26 studies, of which fourteen are concerning acoustic studies and related areas of investigation, and fifteen on computing and studies related to this, including four related to studies on the subject of chess.
Institute of Radio Engineers (IRE) Transactions ceased publishing during 1962, and is now publishing instead as IEEE Transactions on Systems, Man, and Cybernetics: Systems, IEEE Transactions on Cybernetics, and IEEE Transactions on Human-Machine Systems. [15] [16]
During August 1962, Licklider and Welden Clark joint published "On-Line Man-Computer Communication". [17]
MIT published a paper during 1966, written by Warren Teitelman, entitled "Pilot: A Step Towards Man-Computer Symbiosis". [18]
At the time of the publication of one paper, during 2004, there were very few computer applications known to the authors, which exhibited the qualities of computers identified by Licklider within his 1960 article, of being human-like with respect to being collaboratory and possessing the ability to communicate in human like ways. As part of their paper, the authors (Lesh et al.) mention a discussion of prototypes under development by the Mitsubishi Electric Research Laboratories. [19]
Distributed computing is a field of computer science that studies distributed systems, defined as computer systems whose inter-communicating components are located on different networked computers.
Information retrieval (IR) in computing and information science is the task of identifying and retrieving information system resources that are relevant to an information need. The information need can be specified in the form of a search query. In the case of document retrieval, queries can be based on full-text or other content-based indexing. Information retrieval is the science of searching for information in a document, searching for documents themselves, and also searching for the metadata that describes data, and for databases of texts, images or sounds.
Memex [memory expansion] is a hypothetical electromechanical device for interacting with microform documents and described in Vannevar Bush's 1945 article "As We May Think". Bush envisioned the memex as a device in which individuals would compress and store all of their books, records, and communications, "mechanized so that it may be consulted with exceeding speed and flexibility". The individual was supposed to use the memex as an automatic personal filing system, making the memex "an enlarged intimate supplement to his memory".
Collaborative software or groupware is application software designed to help people working on a common task to attain their goals. One of the earliest definitions of groupware is "intentional group processes plus software to support them."
The Information Processing Techniques Office (IPTO), originally "Command and Control Research", was part of the Defense Advanced Research Projects Agency of the United States Department of Defense.
The Advanced Research Projects Agency Network (ARPANET) was the first wide-area packet-switched network with distributed control and one of the first computer networks to implement the TCP/IP protocol suite. Both technologies became the technical foundation of the Internet. The ARPANET was established by the Advanced Research Projects Agency of the United States Department of Defense.
Joseph Carl Robnett Licklider, known simply as J. C. R. or "Lick", was an American psychologist and computer scientist who is considered to be among the most prominent figures in computer science development and general computing history.
Robert William Taylor, known as Bob Taylor, was an American Internet pioneer, who led teams that made major contributions to the personal computer, and other related technologies. He was director of ARPA's Information Processing Techniques Office from 1965 through 1969, founder and later manager of Xerox PARC's Computer Science Laboratory from 1970 through 1983, and founder and manager of Digital Equipment Corporation's Systems Research Center until 1996.
SRI International's Augmentation Research Center (ARC) was founded in the 1960s by electrical engineer Douglas Engelbart to develop and experiment with new tools and techniques for collaboration and information processing.
In computer science, interactive computing refers to software which accepts input from the user as it runs.
Computer-supported collaboration research focuses on technology that affects groups, organizations, communities and societies, e.g., voice mail and text chat. It grew from cooperative work study of supporting people's work activities and working relationships. As net technology increasingly supported a wide range of recreational and social activities, consumer markets expanded the user base, enabling more and more people to connect online to create what researchers have called a computer supported cooperative work, which includes "all contexts in which technology is used to mediate human activities such as communication, coordination, cooperation, competition, entertainment, games, art, and music".
Intelligence amplification (IA) is the use of information technology in augmenting human intelligence. The idea was first proposed in the 1950s and 1960s by cybernetics and early computer pioneers.
EcoBot or “”Eco-Bot”” is short for Ecological Robot and it refers to a class of energetically autonomous robots that can remain self-sustainable by collecting their energy from material, mostly waste matter, in the environment. The only by-product from this process is carbon dioxide, which would have been produced from the natural biodegradation of the fuel regardless. This carbon dioxide production belongs to the immediate carbon cycle of our planet and does not impose to the already increasing problem of the greenhouse effect.
Dr. Lawrence Jerome Fogel was a pioneer in evolutionary computation and human factors analysis. He is known as the inventor of active noise cancellation and the father of evolutionary programming. His scientific career spanned nearly six decades and included electrical engineering, aerospace engineering, communication theory, human factors research, information processing, cybernetics, biotechnology, artificial intelligence, and computer science.
The global brain is a neuroscience-inspired and futurological vision of the planetary information and communications technology network that interconnects all humans and their technological artifacts. As this network stores ever more information, takes over ever more functions of coordination and communication from traditional organizations, and becomes increasingly intelligent, it increasingly plays the role of a brain for the planet Earth. In the philosophy of mind, global brain finds an analog in Averroes's theory of the unity of the intellect.
"As We May Think" is a 1945 essay by Vannevar Bush which has been described as visionary and influential, anticipating many aspects of information society. It was first published in The Atlantic in July 1945 and republished in an abridged version in September 1945—before and after the atomic bombings of Hiroshima and Nagasaki. Bush expresses his concern for the direction of scientific efforts toward destruction, rather than understanding, and explicates a desire for a sort of collective memory machine with his concept of the memex that would make knowledge more accessible, believing that it would help fix these problems. Through this machine, Bush hoped to transform an information explosion into a knowledge explosion.
Computational thinking (CT) refers to the thought processes involved in formulating problems so their solutions can be represented as computational steps and algorithms. In education, CT is a set of problem-solving methods that involve expressing problems and their solutions in ways that a computer could also execute. It involves automation of processes, but also using computing to explore, analyze, and understand processes.
Cybernetics is the transdisciplinary study of circular processes such as feedback systems where outputs are also inputs. It is concerned with general principles that are relevant across multiple contexts, including in ecological, technological, biological, cognitive and social systems and also in practical activities such as designing, learning, and managing.
Human–computer interaction (HCI) is research in the design and the use of computer technology, which focuses on the interfaces between people (users) and computers. HCI researchers observe the ways humans interact with computers and design technologies that allow humans to interact with computers in novel ways. A device that allows interaction between human being and a computer is known as a "Human-computer Interface (HCI)".
Informatics is the study of computational systems. According to the ACM Europe Council and Informatics Europe, informatics is synonymous with computer science and computing as a profession, in which the central notion is transformation of information. In some cases, the term "informatics" may also be used with different meanings, e.g. in the context of social computing, or in context of library science.