Marine optical buoy

Last updated

The marine optical buoy (MOBY) measures light at and very near the sea surface in a specific location over a long period of time, serving as part of an ocean color observation system. Satellites are another component of the system, providing global coverage through remote sensing; however, satellites measure light above the Earth's atmosphere, becoming subject to interference from the atmosphere itself and other light sources. The Marine Optical Buoy helps alleviate that interference and thus improve the quality of the overall ocean color observation system.

Contents

Physical description

MOBY is a buoy 15 meters tall floating vertically in the water with approximately 3 meters above the surface and 12 meters below. A float canister is at water level, measuring approximately 2 meters high and 1.5 meters in diameter above the water, 1 meter in diameter below the water. Above the float canister are four solar panels and an antenna column. From the bottom of the float canister, a central column descends to a 2-meter-high, 1-meter-diameter instrument canister. Along the central column are three standoff arms measuring 3 meters long, 2.5 meters long, and 2 meters long, respectively. The standoff arms can be relocated up and down the central column during maintenance. Light collectors are at the ends of the standoff arms and at the top of the antenna column. The antenna column includes Global Positioning System (GPS), very high frequency (VHF), and cellular telephone antennas. Computers, communications, and control electronics occupy the float canister. A marine optical system (MOS), a power system, and batteries occupy the instrument canister. The MOS includes spectrographs with charge-coupled device (CCD) detectors, an optical multiplexer, and fiber optic sensor lines to the light collectors. [1]

MOBY has a tether to another buoy that is moored to the sea floor at a depth of about 1200 meters. MOBY is located at 20°49.0′N157°11.5′W / 20.8167°N 157.1917°W / 20.8167; -157.1917 , west of Lanai, in the lee of the Hawaiian Islands. [1]

Function

Light from the Sun crosses space, enters and travels through the Earth's atmosphere, then enters the Earth's oceans. In the atmosphere and in the oceans, this light reflects from, refracts around, and absorbs into molecules and other objects. Some of this light leaves the water to again travel through the atmosphere and out into space, carrying the color of whatever it struck.

At the sea surface, light coming down through the atmosphere enters the collector at the top of MOBY's antenna column. Each of MOBY's three submerged standoff arms has a pair of light collectors: one on top of the arm to collect downward moving light; and one underneath the arm to collect upward moving reflected light. Light entering the collectors travels through optical fibers and the optical multiplexer to the CCD detectors and spectrographs. The spectrographs record the light signals, and a computer stores the measurement data. The communications system aboard MOBY daily transmits much of the light measurement data to operators on shore. [2]

There is one Marine Optical Buoy operating in the water, and another in maintenance on shore. Every 3 to 4 months, a team exchanges the two buoys. The team calibrates each MOBY while it is in maintenance, both before deploying the buoy and after recovering it. Additionally, a team visits the MOBY in the water monthly, to clean algae, barnacles, and other organisms off the light collectors; and to generate independent comparison data using portable reference light sources. Each MOBY has internal reference light sources, as well, for continuous but not independent comparison. The MOBY calibration data traces to National Institute of Standards and Technology (NIST) radiometric standards directly, as opposed to using intermediate standards. [2]

Contribution

MOBY has generated calibrated measurements of ocean color at the sea surface since 1996. MOBY served as the primary sea surface calibration for satellite borne sensors such as the sea-viewing wide field-of-view sensor (SeaWiFS) and the moderate-resolution imaging spectroradiometer (MODIS). MOBY has contributed to the calibration of the Ocean Color and Temperature Sensor (OCTS), the polarization detection environmental radiometer (POLDER), and the Modular Optoelectronic Scanner (IRS1-MOS). [2]

Long term sensors on the sea surface, such as MOBY, help improve the quality of the global ocean color observation system. [3] [4]

Related Research Articles

<span class="mw-page-title-main">Microwave radiometer</span>

A microwave radiometer (MWR) is a radiometer that measures energy emitted at one millimeter-to-metre wavelengths (frequencies of 0.3–300 GHz) known as microwaves. Microwave radiometers are very sensitive receivers designed to measure thermally-emitted electromagnetic radiation. They are usually equipped with multiple receiving channels to derive the characteristic emission spectrum of planetary atmospheres, surfaces or extraterrestrial objects. Microwave radiometers are utilized in a variety of environmental and engineering applications, including remote sensing, weather forecasting, climate monitoring, radio astronomy and radio propagation studies.

<span class="mw-page-title-main">Moderate Resolution Imaging Spectroradiometer</span> Payload imaging sensor

The Moderate Resolution Imaging Spectroradiometer (MODIS) is a satellite-based sensor used for earth and climate measurements. There are two MODIS sensors in Earth orbit: one on board the Terra satellite, launched by NASA in 1999; and one on board the Aqua satellite, launched in 2002. MODIS has now been replaced by the VIIRS, which first launched in 2011 aboard the Suomi NPP satellite.

SeaWIFS was a satellite-borne sensor designed to collect global ocean biological data. Active from September 1997 to December 2010, its primary mission was to quantify chlorophyll produced by marine phytoplankton.

<span class="mw-page-title-main">National Data Buoy Center</span>

The National Data Buoy Center (NDBC) is a part of the National Oceanic and Atmospheric Administration's (NOAA) National Weather Service (NWS). NDBC designs, develops, operates, and maintains a network of data collecting buoys and coastal stations. The NDBC is located in southern Mississippi as a tenant at the John C. Stennis Space Center, a National Aeronautics and Space Administration (NASA) facility.

<span class="mw-page-title-main">Advanced very-high-resolution radiometer</span>

The Advanced Very-High-Resolution Radiometer (AVHRR) instrument is a space-borne sensor that measures the reflectance of the Earth in five spectral bands that are relatively wide by today's standards. AVHRR instruments are or have been carried by the National Oceanic and Atmospheric Administration (NOAA) family of polar orbiting platforms (POES) and European MetOp satellites. The instrument scans several channels; two are centered on the red (0.6 micrometres) and near-infrared (0.9 micrometres) regions, a third one is located around 3.5 micrometres, and another two the thermal radiation emitted by the planet, around 11 and 12 micrometres.

<span class="mw-page-title-main">Coastal zone color scanner</span> Satellite device designed for detecting water on Earth

The coastal zone color scanner (CZCS) was a multi-channel scanning radiometer aboard the Nimbus 7 satellite, predominately designed for water remote sensing. Nimbus 7 was launched 24 October 1978, and CZCS became operational on 2 November 1978. It was only designed to operate for one year (as a proof-of-concept), but in fact remained in service until 22 June 1986. Its operation on board the Nimbus 7 was limited to alternate days as it shared its power with the passive microwave scanning multichannel microwave radiometer.

<span class="mw-page-title-main">Weather buoy</span> Floating instrument package which collects weather and ocean data on the worlds oceans

Weather buoys are instruments which collect weather and ocean data within the world's oceans, as well as aid during emergency response to chemical spills, legal proceedings, and engineering design. Moored buoys have been in use since 1951, while drifting buoys have been used since 1979. Moored buoys are connected with the ocean bottom using either chains, nylon, or buoyant polypropylene. With the decline of the weather ship, they have taken a more primary role in measuring conditions over the open seas since the 1970s. During the 1980s and 1990s, a network of buoys in the central and eastern tropical Pacific Ocean helped study the El Niño-Southern Oscillation. Moored weather buoys range from 1.5–12 metres (5–40 ft) in diameter, while drifting buoys are smaller, with diameters of 30–40 centimetres (12–16 in). Drifting buoys are the dominant form of weather buoy in sheer number, with 1250 located worldwide. Wind data from buoys has smaller error than that from ships. There are differences in the values of sea surface temperature measurements between the two platforms as well, relating to the depth of the measurement and whether or not the water is heated by the ship which measures the quantity.

<span class="mw-page-title-main">Ocean color</span> Explanation of the color of oceans and ocean color remote sensing

Ocean color is the branch of ocean optics that specifically studies the color of the water and information that can be gained from looking at variations in color. The color of the ocean, while mainly blue, actually varies from blue to green or even yellow, brown or red in some cases. This field of study developed alongside water remote sensing, so it is focused mainly on how color is measured by instruments.

<span class="mw-page-title-main">Global Change Observation Mission</span> JAXA project of long-term observation of Earth

GCOM, is a JAXA project of long-term observation of Earth environmental changes. As a part of Japan's contributions to GEOSS, GCOM will be continued for 10 to 15 years with observation and utilization of global geophysical data such as precipitation, snow, water vapor, aerosol, for climate change prediction, water management, and food security. On May 18, 2012, the first satellite "GCOM-W" was launched. On December 23, 2017, the second satellite "GCOM-C1" was launched.

A mooring in oceanography is a collection of devices connected to a wire and anchored on the sea floor. It is the Eulerian way of measuring ocean currents, since a mooring is stationary at a fixed location. In contrast to that, the Lagrangian way measures the motion of an oceanographic drifter, the Lagrangian drifter.

<span class="mw-page-title-main">Drifter (oceanography)</span> Oceanographic instrument package floating freely on the surface, transported by currents

A drifter is an oceanographic device floating on the surface to investigate ocean currents by tracking location. They can also measure other parameters like sea surface temperature, salinity, barometric pressure, and wave height. Modern drifters are typically tracked by satellite, often GPS. They are sometimes called Lagrangian drifters since the location of the measurements they make moves with the flow. A major user of drifters is NOAA's Global Drifter Program.

<span class="mw-page-title-main">Sentinel-3</span> Earth observation satellite series

Sentinel-3 is an Earth observation heavy satellite series developed by the European Space Agency as part of the Copernicus Programme. It currently consists of 2 satellites: Sentinel-3A and Sentinel-3B. After initial commissioning, each satellite was handed over to EUMETSAT for the routine operations phase of the mission. Two recurrent satellites— Sentinel-3C and Sentinel-3D— will follow in approximately 2024 and 2028 respectively to ensure continuity of the Sentinel-3 mission.

The following are considered ocean essential climate variables (ECVs) by the Ocean Observations Panel for Climate (OOPC) that are currently feasible with current observational systems.

<span class="mw-page-title-main">ADEOS I</span> Japanese Earth observation satellite

ADEOS I was an Earth observation satellite launched by NASDA in 1996. The mission's Japanese name, Midori means "green". The mission ended in July 1997 after the satellite sustained structural damage to the solar panel. Its successor, ADEOS II, was launched in 2002. Like the first mission, it ended after less than a year, also following solar panel malfunctions.

The Tropical Atmosphere Ocean (TAO) project is a major international effort that instrumented the entire tropical Pacific Ocean with approximately 70 deep ocean moorings. The development of the TAO array in 1985 was motivated by the 1982-1983 El Niño event and ultimately designed for the study of year-to-year climate variations related to El Niño and the Southern Oscillation (ENSO). Led by the TAO Project Office of the Pacific Marine Environmental Laboratory (PMEL), the full array of 70 moorings was completed in 1994.

<span class="mw-page-title-main">NIRSpec</span> Spectrograph on the James Webb Space Telescope

The NIRSpec is one of the four scientific instruments flown on the James Webb Space Telescope (JWST). The JWST is the follow-on mission to the Hubble Space Telescope (HST) and is developed to receive more information about the origins of the universe by observing infrared light from the first stars and galaxies. In comparison to HST, its instruments will allow looking further back in time and will study the so-called Dark Ages during which the universe was opaque, about 150 to 800 million years after the Big Bang.

<span class="mw-page-title-main">Haiyang (satellite)</span> Chinese ocean observation satellite

Haiyang is a series of marine remote sensing satellites developed and operated by the People's Republic of China since 2002. As of October 2022, eight satellites have been launched with ten more planned. Built by the state-owned aerospace contractor China Academy of Space Technology (CAST), Haiyang satellites carry a variety of ocean-imaging sensor payloads and are operated by the National Satellite Ocean Application Service (NSOAS), a subordinate agency of the State Oceanic Administration (SOA). Haiyang satellites are launched from Taiyuan Satellite Launch Center (TSLC) into Sun-synchronous orbit (SSO) aboard Long March-series rockets.

<span class="mw-page-title-main">Plankton, Aerosol, Cloud, ocean Ecosystem</span>

Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) is a NASA Earth-observing satellite mission that will continue and advance observations of global ocean color, biogeochemistry, and ecology, as well as the carbon cycle, aerosols and clouds. PACE will be used to identify the extent and duration of phytoplankton blooms and improve understanding of air quality. These and other uses of PACE data will benefit the economy and society, especially sectors that rely on water quality, fisheries and food security.

Remote sensing in oceanography is a widely used observational technique which enables researchers to acquire data of a location without physically measuring at that location. Remote sensing in oceanography mostly refers to measuring properties of the ocean surface with sensors on satellites or planes, which compose an image of captured electromagnetic radiation. A remote sensing instrument can either receive radiation from the earth’s surface (passive), whether reflected from the sun or emitted, or send out radiation to the surface and catch the reflection (active). All remote sensing instruments carry a sensor to capture the intensity of the radiation at specific wavelength windows, to retrieve a spectral signature for every location. The physical and chemical state of the surface determines the emissivity and reflectance for all bands in the electromagnetic spectrum, linking the measurements to physical properties of the surface. Unlike passive instruments, active remote sensing instruments also measure the two-way travel time of the signal; which is used to calculate the distance between the sensor and the imaged surface. Remote sensing satellites often carry other instruments which keep track of their location and measure atmospheric conditions.

<span class="mw-page-title-main">Ocean optics</span> The study of light interaction with water and submerged materials

Ocean optics is the study of how light interacts with water and the materials in water. Although research often focuses on the sea, the field broadly includes rivers, lakes, inland waters, coastal waters, and large ocean basins. How light acts in water is critical to how ecosystems function underwater. Knowledge of ocean optics is needed in aquatic remote sensing research in order to understand what information can be extracted from the color of the water as it appears from satellite sensors in space. The color of the water as seen by satellites is known as ocean color. While ocean color is a key theme of ocean optics, optics is a broader term that also includes the development of underwater sensors using optical methods to study much more than just color, including ocean chemistry, particle size, imaging of microscopic plants and animals, and more.

References

  1. 1 2 Clark, D; Gordon, H; Voss, K; Ge, Y.; Broenkow, W.; Trees, C.; et al. (1997), "Validation of atmospheric correction over the oceans", Journal of Geophysical Research (published 1997-07-27), vol. 102, no. D14, pp. 17209–17217, Bibcode:1997JGR...10217209C, doi:10.1029/96JD03345, ISSN   0148-0227
  2. 1 2 3 Clark, Dennis; Yarbrough, Mark; Feinholz, Mike; et al. (2003), "MOBY, a radiometric buoy for performance monitoring and vicarious calibration of satellite ocean color sensors: measurement and data analysis protocols" (PDF), in Mueller, James; Fargion, Giulietta; McClain, Charles (eds.), Ocean Optics Protocols for Satellite Ocean Color Sensor Validation (PDF), vol. VI (Revision 4 ed.), Greenbelt, MD: National Aeronautics and Space Administration Goddard Space Flight Center (published April 2003), pp. 3–34, NASA/TM-2003-211621/Rev4-Vol.VI, archived from the original (PDF) on 2008-05-12, retrieved 2008-11-21
  3. Antoine, David; Morel, André; Hooker, Stanford; et al. (2002-12-13), "Medium Resolution Imaging Spectrometer (Meris) Validation: Early Results At the Boussole Site (Mediterranean Sea)", Envisat Validation Workshops Proceedings (9–13 December 2002 ed.), Frascati, Italy: European Space Agency Centre for Earth Observation (ESRIN) (published July 2003), archived from the original (PDF) on 30 December 2003, retrieved 2008-11-25
  4. Martin, Seelye (2004), An Introduction to Ocean Remote Sensing, Cambridge University Press, p. 139, ISBN   978-0521802802 , retrieved 2008-12-02

Further reading