Martin Feinberg

Last updated
Martin Feinberg
Born (1942-04-02) April 2, 1942 (age 82)
Nationality American
Alma mater Cooper Union, Purdue University, Princeton University
Known for Chemical reaction network theory
AwardsJohn Von Neumann Lecture in Theoretical Biology, Institute for Advanced Study, 1997
AIChE Richard H. Wilhelm Award [1]
Camille & Henry Dreyfus Teacher- Scholar, 1974
Scientific career
Fields Mathematics, Chemical engineering, Biology
Institutions Ohio State University
Doctoral advisor William Schowalter

Martin Feinberg is an American chemical engineer and mathematician known for his work in chemical reaction network theory.

Contents

Life

Born in New York, Feinberg received his undergraduate degree in chemical engineering from The Cooper Union for the Advancement of Science and Art in 1962. A year later, he obtained his master's degree from Purdue University. In 1968, he received his PhD degree from Princeton University. The subject of the doctoral thesis is fluid mechanics and the advisor is William Schowalter. After completing the PhD, he went to work at the University of Rochester, Rochester, NY, where he was a professor of chemical engineering until 1997. He then moved to The Ohio State University, where he serves as Richard M. Morrow Professor of Chemical Engineering and professor of mathematics. Feinberg was a member of the editorial board of the Archive for Rational Mechanics and Analysis from 1978–1991.

Research

Together with F. J. M. Horn and Roy Jackson, Feinberg created chemical reaction network theory, a field of mathematics that connects the graphical and algebraic structure of chemical reaction networks with their dynamic behavior. He is best known for stating and proving the deficiency zero theorem (together with Horn and Jackson) and the deficiency one theorem. He has also articulated complete necessary and sufficient conditions for detailed balancing in mass-action systems. More recently, Feinberg has turned his attention to problems arising from biology. Together with Gheorghe Craciun, he developed the theory of injective reaction networks and explored its implications for biochemistry. A current research focus (together with Guy Shinar) is the application of chemical reaction network theory to questions of robustness in biochemical reaction networks. He has also worked with Richard Lavine on foundations of classical thermodynamics. Feinberg is the author of "Foundations of Chemical Reaction Network Theory," published in 2019 by Springer in its Applied Mathematical Sciences series.

Selected publications

Notes

Related Research Articles

<span class="mw-page-title-main">Entropy</span> Property of a thermodynamic system

Entropy is a scientific concept that is most commonly associated with a state of disorder, randomness, or uncertainty. The term and the concept are used in diverse fields, from classical thermodynamics, where it was first recognized, to the microscopic description of nature in statistical physics, and to the principles of information theory. It has found far-ranging applications in chemistry and physics, in biological systems and their relation to life, in cosmology, economics, sociology, weather science, climate change and information systems including the transmission of information in telecommunication.

In physics, statistical mechanics is a mathematical framework that applies statistical methods and probability theory to large assemblies of microscopic entities. Sometimes called statistical physics or statistical thermodynamics, its applications include many problems in the fields of physics, biology, chemistry, neuroscience, computer science, information theory and sociology. Its main purpose is to clarify the properties of matter in aggregate, in terms of physical laws governing atomic motion.

<span class="mw-page-title-main">Thermodynamics</span> Physics of heat, work, and temperature

Thermodynamics is a branch of physics that deals with heat, work, and temperature, and their relation to energy, entropy, and the physical properties of matter and radiation. The behavior of these quantities is governed by the four laws of thermodynamics, which convey a quantitative description using measurable macroscopic physical quantities, but may be explained in terms of microscopic constituents by statistical mechanics. Thermodynamics applies to a wide variety of topics in science and engineering, especially physical chemistry, biochemistry, chemical engineering and mechanical engineering, but also in other complex fields such as meteorology.

<span class="mw-page-title-main">Josiah Willard Gibbs</span> American scientist (1839–1903)

Josiah Willard Gibbs was an American scientist who made significant theoretical contributions to physics, chemistry, and mathematics. His work on the applications of thermodynamics was instrumental in transforming physical chemistry into a rigorous deductive science. Together with James Clerk Maxwell and Ludwig Boltzmann, he created statistical mechanics, explaining the laws of thermodynamics as consequences of the statistical properties of ensembles of the possible states of a physical system composed of many particles. Gibbs also worked on the application of Maxwell's equations to problems in physical optics. As a mathematician, he created modern vector calculus and described the Gibbs phenomenon in the theory of Fourier analysis.

<span class="mw-page-title-main">Timeline of thermodynamics</span>

A timeline of events in the history of thermodynamics.

<span class="mw-page-title-main">Second law of thermodynamics</span> Physical law for entropy and heat

The second law of thermodynamics is a physical law based on universal empirical observation concerning heat and energy interconversions. A simple statement of the law is that heat always flows spontaneously from hotter to colder regions of matter. Another statement is: "Not all heat can be converted into work in a cyclic process."

<span class="mw-page-title-main">Rudolf Clausius</span> German physicist and mathematician (1822–1888)

Rudolf Julius Emanuel Clausius was a German physicist and mathematician and is considered one of the central founding fathers of the science of thermodynamics. By his restatement of Sadi Carnot's principle known as the Carnot cycle, he gave the theory of heat a truer and sounder basis. His most important paper, "On the Moving Force of Heat", published in 1850, first stated the basic ideas of the second law of thermodynamics. In 1865 he introduced the concept of entropy. In 1870 he introduced the virial theorem, which applied to heat.

A dissipative system is a thermodynamically open system which is operating out of, and often far from, thermodynamic equilibrium in an environment with which it exchanges energy and matter. A tornado may be thought of as a dissipative system. Dissipative systems stand in contrast to conservative systems.

<span class="mw-page-title-main">Irreversible process</span> Process that cannot be undone

In science, a process that is not reversible is called irreversible. This concept arises frequently in thermodynamics. All complex natural processes are irreversible, although a phase transition at the coexistence temperature is well approximated as reversible.

<span class="mw-page-title-main">History of thermodynamics</span>

The history of thermodynamics is a fundamental strand in the history of physics, the history of chemistry, and the history of science in general. Due to the relevance of thermodynamics in much of science and technology, its history is finely woven with the developments of classical mechanics, quantum mechanics, magnetism, and chemical kinetics, to more distant applied fields such as meteorology, information theory, and biology (physiology), and to technological developments such as the steam engine, internal combustion engine, cryogenics and electricity generation. The development of thermodynamics both drove and was driven by atomic theory. It also, albeit in a subtle manner, motivated new directions in probability and statistics; see, for example, the timeline of thermodynamics.

In the history of physics, the concept of entropy developed in response to the observation that a certain amount of functional energy released from combustion reactions is always lost to dissipation or friction and is thus not transformed into useful work. Early heat-powered engines such as Thomas Savery's (1698), the Newcomen engine (1712) and Nicolas-Joseph Cugnot's steam tricycle (1769) were inefficient, converting less than two percent of the input energy into useful work output; a great deal of useful energy was dissipated or lost. Over the next two centuries, physicists investigated this puzzle of lost energy; the result was the concept of entropy.

<span class="mw-page-title-main">History of energy</span>


In the history of physics, the history of energy examines the gradual development of energy as a central scientific concept. Classical mechanics was initially understood through the study of motion and force by thinkers like Galileo Galilei and Isaac Newton, the importance of the concept of energy was made clear in the 19th century with the principles of thermodynamics, particularly the conservation of energy which established that energy cannot be created or destroyed, only transformed. In the 20th century Albert Einstein's mass–energy equivalence expanded this understanding by linking mass and energy, and quantum mechanics introduced quantized energy levels. Today, energy is recognized as a fundamental conserved quantity across all domains of physics, underlying both classical and quantum phenomena.

<span class="mw-page-title-main">Lloyd Demetrius</span> American mathematician

Lloyd A. Demetrius is an American mathematician and theoretical biologist at the Department of Organismic and Evolutionary Biology, Harvard University. He is best known for the discovery of the concept of evolutionary entropy, a statistical parameter that characterizes Darwinian fitness in models of evolutionary processes at various levels of biological organization – molecular, organismic and social. Evolutionary entropy, a generalization of the Gibbs-Boltzmann entropy in statistical thermodynamics, is the cornerstone of directionality theory, an analytical study of evolution by variation and selection. The theory has applications to: a) the development of aging and the evolution of longevity; b) the origin and progression of age related diseases such as cancer, and neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease; c) the evolution of cooperation and the spread of inequality.

Morton Edward Gurtin was an American mechanical engineer who became a mathematician and mathematical physicist. He was an emeritus professor of mathematical sciences at Carnegie-Mellon University, where for many years he held an endowed chair as the Alumni Professor of Mathematical Science. His main work is in materials science, in the form of the mathematical, rational mechanics of non-linear continuum mechanics and thermodynamics, in the style of Clifford Truesdell and Walter Noll, a field also known under the combined name of continuum thermomechanics. He has published over 250 papers, many among them in Archive for Rational Mechanics and Analysis, as well as a number of books.

Chemical reaction network theory is an area of applied mathematics that attempts to model the behaviour of real-world chemical systems. Since its foundation in the 1960s, it has attracted a growing research community, mainly due to its applications in biochemistry and theoretical chemistry. It has also attracted interest from pure mathematicians due to the interesting problems that arise from the mathematical structures involved.

<span class="mw-page-title-main">Wassim Michael Haddad</span> Lebanese-Greek-American mathematician

Wassim Michael Haddad is a Lebanese-Greek-American applied mathematician, scientist, and engineer, with research specialization in the areas of dynamical systems and control. His research has led to fundamental breakthroughs in applied mathematics, thermodynamics, stability theory, robust control, dynamical system theory, and neuroscience. Professor Haddad is a member of the faculty of the School of Aerospace Engineering at Georgia Institute of Technology, where he holds the rank of Professor and Chair of the Flight Mechanics and Control Discipline. Dr. Haddad is a member of the Academy of Nonlinear SciencesArchived 2016-03-04 at the Wayback Machine for recognition of paramount contributions to the fields of nonlinear stability theory, nonlinear dynamical systems, and nonlinear control and an IEEE Fellow for contributions to robust, nonlinear, and hybrid control systems.

<span class="mw-page-title-main">Grigoriy Yablonsky</span>

Grigoriy Yablonsky is an expert in the area of chemical kinetics and chemical engineering, particularly in catalytic technology of complete and selective oxidation, which is one of the main driving forces of sustainable development.

<span class="mw-page-title-main">Alexander Gorban</span> Russian-British scientist (born 1952)

Alexander Nikolaevich Gorban is a scientist of Russian origin, working in the United Kingdom. He is a professor at the University of Leicester, and director of its Mathematical Modeling Centre. Gorban has contributed to many areas of fundamental and applied science, including statistical physics, non-equilibrium thermodynamics, machine learning and mathematical biology.

John Michael Prausnitz is an emeritus professor of chemical engineering at the University of California, Berkeley.

<span class="mw-page-title-main">19th century in science</span>

The 19th century in science saw the birth of science as a profession; the term scientist was coined in 1833 by William Whewell, which soon replaced the older term of (natural) philosopher.