Mask shop

Last updated

A mask shop is a factory which manufactures photomasks for use in the semiconductor industry. There are two distinct types found in the trade. Captive mask shops are in-house operations owned by the biggest semiconductor corporations, while merchant mask shops make masks for most of the industry.

Contents

Merchant mask shops will produce photomasks for a variety of integrated device manufacturers (IDMs), foundries or optical device companies in addition to providing excess cavity work and re-pellicle for captive mask shops.

The company structure is similar to that of any medium-sized manufacture and has the following unique departments or mask makers:

Photomask market

The worldwide photomask production market was $3.1 billion in 2013. Almost half of market attributed to captive mask shops (in-house mask shops of major chipmakers). [1]

Infrastructure (technical and financial)

The costs of creating new mask shop for 180 nm processes were estimated in 2005 as $40 million, and for 130 nm - more than $100 million. [2] In 2013 cost of new 28 nm mask shop was estimated at $110 – 140 million. [3]

Future

As technology shrinks, the cost to mask shops increase and the product turn around time grow longer as well.

See also

Related Research Articles

Photolithography is a process used in the manufacturing of integrated circuits. It involves using light to transfer a pattern onto a substrate, typically a silicon wafer.

<span class="mw-page-title-main">Application-specific integrated circuit</span> Integrated circuit customized for a specific task

An application-specific integrated circuit is an integrated circuit (IC) chip customized for a particular use, rather than intended for general-purpose use, such as a chip designed to run in a digital voice recorder or a high-efficiency video codec. Application-specific standard product chips are intermediate between ASICs and industry standard integrated circuits like the 7400 series or the 4000 series. ASIC chips are typically fabricated using metal–oxide–semiconductor (MOS) technology, as MOS integrated circuit chips.

<span class="mw-page-title-main">TSMC</span> Taiwanese semiconductor foundry company

Taiwan Semiconductor Manufacturing Company Limited is a Taiwanese multinational semiconductor contract manufacturing and design company. It is the world's second most valuable semiconductor company, the world's largest dedicated independent ("pure-play") semiconductor foundry, and its country's largest company, with headquarters and main operations located in the Hsinchu Science Park in Hsinchu, Taiwan. It is majority owned by foreign investors, and the central government of Taiwan is the largest shareholder.

The semiconductor industry is the aggregate of companies engaged in the design and fabrication of semiconductors and semiconductor devices, such as transistors and integrated circuits. It formed around 1960, once the fabrication of semiconductor devices became a viable business. The industry's annual semiconductor sales revenue has since grown to over $481 billion, as of 2018. The semiconductor industry is in turn the driving force behind the wider electronics industry, with annual power electronics sales of £135 billion as of 2011, annual consumer electronics sales expected to reach $2.9 trillion by 2020, tech industry sales expected to reach $5 trillion in 2019, and e-commerce with over $29 trillion in 2017. In 2019, 32.4% of the semiconductor market segment was for networks and communications devices.

<span class="mw-page-title-main">Photomask</span> Photolithographic Tool

A photomask is an opaque plate with transparent areas that allow light to shine through in a defined pattern. Photomasks are commonly used in photolithography for the production of integrated circuits to produce a pattern on a thin wafer of material.

The foundry model is a microelectronics engineering and manufacturing business model consisting of a semiconductor fabrication plant, or foundry, and an integrated circuit design operation, each belonging to separate companies or subsidiaries.

<span class="mw-page-title-main">Electron-beam lithography</span> Lithographic technique that uses a scanning beam of electrons

Electron-beam lithography is the practice of scanning a focused beam of electrons to draw custom shapes on a surface covered with an electron-sensitive film called a resist (exposing). The electron beam changes the solubility of the resist, enabling selective removal of either the exposed or non-exposed regions of the resist by immersing it in a solvent (developing). The purpose, as with photolithography, is to create very small structures in the resist that can subsequently be transferred to the substrate material, often by etching.

<span class="mw-page-title-main">Extreme ultraviolet lithography</span> Lithography using wavelength 13.5 nm UV light

Extreme ultraviolet lithography (EUVL) (also known simply as EUV) is a cutting-edge technology used in the semiconductor industry for manufacturing integrated circuits (ICs). It is a type of photolithography that uses extreme ultraviolet (EUV) light to create intricate patterns on silicon wafers.

<span class="mw-page-title-main">ASML Holding</span> Dutch manufacturer of semiconductor production equipment

ASML Holding N.V. is a Dutch multinational corporation founded in 1984. ASML specializes in the development and manufacturing of photolithography machines which are used to produce computer chips.

<span class="mw-page-title-main">Phase-shift mask</span> Resolution-improving photomask

Phase-shift masks are photomasks that take advantage of the interference generated by phase differences to improve image resolution in photolithography. There exist alternating and attenuated phase shift masks. A phase-shift mask relies on the fact that light passing through a transparent media will undergo a phase change as a function of its optical thickness.

<span class="mw-page-title-main">SEMATECH</span>

SEMATECH is a not-for-profit consortium that performs research and development to advance chip manufacturing. SEMATECH has broad engagement with various sectors of the R&D community, including chipmakers, equipment and material suppliers, universities, research institutes, and government partners. The group is funded by member dues.

<span class="mw-page-title-main">Optical proximity correction</span> Photolithography enhancement technique

Optical proximity correction (OPC) is a photolithography enhancement technique commonly used to compensate for image errors due to diffraction or process effects. The need for OPC is seen mainly in the making of semiconductor devices and is due to the limitations of light to maintain the edge placement integrity of the original design, after processing, into the etched image on the silicon wafer. These projected images appear with irregularities such as line widths that are narrower or wider than designed, these are amenable to compensation by changing the pattern on the photomask used for imaging. Other distortions such as rounded corners are driven by the resolution of the optical imaging tool and are harder to compensate for. Such distortions, if not corrected for, may significantly alter the electrical properties of what was being fabricated. Optical proximity correction corrects these errors by moving edges or adding extra polygons to the pattern written on the photomask. This may be driven by pre-computed look-up tables based on width and spacing between features or by using compact models to dynamically simulate the final pattern and thereby drive the movement of edges, typically broken into sections, to find the best solution,. The objective is to reproduce the original layout drawn by the designer on the semiconductor wafer as well as possible.

The 14 nm process refers to the MOSFET technology node that is the successor to the 22 nm node. The 14 nm was so named by the International Technology Roadmap for Semiconductors (ITRS). Until about 2011, the node following 22 nm was expected to be 16 nm. All 14 nm nodes use FinFET technology, a type of multi-gate MOSFET technology that is a non-planar evolution of planar silicon CMOS technology.

Computational lithography is the set of mathematical and algorithmic approaches designed to improve the resolution attainable through photolithography. Computational lithography came to the forefront of photolithography technologies in 2008 when the semiconductor industry faced challenges associated with the transition to a 22 nanometer CMOS microfabrication process and has become instrumental in further shrinking the design nodes and topology of semiconductor transistor manufacturing.

GlobalFoundries Inc. (GF) is a multinational semiconductor contract manufacturing and design company incorporated in the Cayman Islands and headquartered in Malta, New York. Created by the divestiture of the manufacturing arm of AMD, the company was privately owned by Mubadala Investment Company, a sovereign wealth fund of the United Arab Emirates, until an initial public offering (IPO) in October 2021.

<span class="mw-page-title-main">SÜSS MicroTec</span>

Suss Microtec is a supplier of equipment and process solutions for the semiconductor, nano and microsystems technology and related markets with headquarters in Garching near Munich.

<span class="mw-page-title-main">Photronics Inc</span>

Photronics, Inc is an American semiconductor photomask manufacturer. It was the third largest photomask supplier globally as of 2020.

In semiconductor manufacturing, the International Roadmap for Devices and Systems defines the 5 nm process as the MOSFET technology node following the 7 nm node. In 2020, Samsung and TSMC entered volume production of 5 nm chips, manufactured for companies including Apple, Marvell, Huawei and Qualcomm.

In semiconductor manufacturing, the International Technology Roadmap for Semiconductors defines the 7 nm process as the MOSFET technology node following the 10 nm node. It is based on FinFET technology, a type of multi-gate MOSFET technology.

Multibeam is an American corporation that engages in the design, manufacture, and sale of semiconductor processing equipment used in the fabrication of integrated circuits. Headquartered in Santa Clara, in the Silicon Valley, Multibeam is led by Dr. David K. Lam, the founder and first CEO of Lam Research.

References

  1. Tracy, Dan; Deborah Geiger (April 14, 2014). "SEMI Reports 2013 Semiconductor Photomask Sales of $3.1 Billion". SEMI. Retrieved 6 September 2014.
  2. An Analysis of the Economics of Photomask Manufacturing Part – 1: The Economic Environment, Weber, February 9, 2005. Slide 6 "The Mask Shop’s Perspective"
  3. Hayes, Caroline (September 23, 2013). "EDA-IP Update. Photomask, the industry's Cinderella". ChipDesignMag. Retrieved 3 December 2015.

Further reading