Megasonic cleaning

Last updated

Megasonic cleaning is a type of acoustic cleaning related to ultrasonic cleaning. It is a gentler cleaning mechanism that is less likely to cause damage. [1] Megasonic cleaning is used in the electronics industry for various semiconductor device fabrication processes. [2]

Contents

Like ultrasonic cleaning, megasonic cleaning uses a transducer that usually sits on top of a piezoelectric substrate. [3] The transducer creates an acoustic field at a much higher frequency (typically 0.8–2 MHz) than ultrasonic cleaning (20-200 kHz). As a result, the cavitation that occurs is gentler and on a much smaller scale. [4]

Comparison to ultrasonic cleaning

Megasonic cleaning differs from ultrasonic cleaning in the frequency that is used to generate the acoustic waves. Ultrasonic cleaning uses lower frequencies and it's mechanism relies on cavitation, [1] while megasonic cleaning uses higher frequencies and produces less damaging cavitation.

In ultrasonic devices, cavitation occurs throughout the tank, and all sides of submerged parts are cleaned. In megasonic devices, the acoustic wave is found only in a line of sight from the transducer surface. For this reason, megasonic transducers are typically built using arrays of closely spaced square or rectangular piezo devices that are bonded to a substrate. Semiconductor wafers are typically cleaned in carriers holding the substrates perpendicular to the transducer, allowing both the front and back surfaces to be cleaned. Special carriers are sometimes used to reduce any obstructions that may prevent parts of the wafer surface from being cleaned. [2]

Megasonic cleaners come in many configurations, such as single or dual nozzle systems, or single-wafer transducers. In single-wafer devices, the wafer rotates on a spinning tool and the megasonic waves are applied from above by the nozzle (liquid stream) or by the face-to-face transducer (partial area excited by megasound). [5]

See also

Related Research Articles

<span class="mw-page-title-main">Semiconductor device fabrication</span> Manufacturing process used to create integrated circuits

Semiconductor device fabrication is the process used to manufacture semiconductor devices, typically integrated circuits (ICs) such as computer processors, microcontrollers, and memory chips. It is a multiple-step photolithographic and physico-chemical process during which electronic circuits are gradually created on a wafer, typically made of pure single-crystal semiconducting material. Silicon is almost always used, but various compound semiconductors are used for specialized applications.

<span class="mw-page-title-main">Ultrasound</span> Sound waves with frequencies above the human hearing range

Ultrasound is sound with frequencies greater than 20 kilohertz. This frequency is the approximate upper audible limit of human hearing in healthy young adults. The physical principles of acoustic waves apply to any frequency range, including ultrasound. Ultrasonic devices operate with frequencies from 20 kHz up to several gigahertz.

<span class="mw-page-title-main">Cleaning</span> Activity that removes dirt and other particles from people, animals and objects

Cleaning is the process of removing unwanted substances, such as dirt, infectious agents, and other impurities, from an object or environment. Cleaning is often performed for aesthetic, hygienic, functional, safety, or environmental protection purposes. Cleaning occurs in many different contexts, and uses many different methods. Several occupations are devoted to cleaning.

<span class="mw-page-title-main">Surface acoustic wave</span> Sound wave which travels along the surface of an elastic material

A surface acoustic wave (SAW) is an acoustic wave traveling along the surface of a material exhibiting elasticity, with an amplitude that typically decays exponentially with depth into the material, such that they are confined to a depth of about one wavelength.

<span class="mw-page-title-main">Aluminium nitride</span> Chemical compound

Aluminium nitride (AlN) is a solid nitride of aluminium. It has a high thermal conductivity of up to 321 W/(m·K) and is an electrical insulator. Its wurtzite phase (w-AlN) has a band gap of ~6 eV at room temperature and has a potential application in optoelectronics operating at deep ultraviolet frequencies.

<span class="mw-page-title-main">Sonication</span> Application of sound energy

Sonication is the act of applying sound energy to agitate particles in a sample, for various purposes such as the extraction of multiple compounds from plants, microalgae and seaweeds. Ultrasonic frequencies (> 20 kHz) are usually used, leading to the process also being known as ultrasonication or ultra-sonication.

<span class="mw-page-title-main">Acoustic emission</span>

Acoustic emission (AE) is the phenomenon of radiation of acoustic (elastic) waves in solids that occurs when a material undergoes irreversible changes in its internal structure, for example as a result of crack formation or plastic deformation due to aging, temperature gradients, or external mechanical forces.

<span class="mw-page-title-main">Ultrasonic cleaning</span> Method of cleaning using ultrasound

Ultrasonic cleaning is a process that uses ultrasound to agitate a fluid, with a cleaning effect. Ultrasonic cleaners come in a variety of sizes, from small desktop units with an internal volume of less than 0.5 litres (0.13 US gal), to large industrial units with volumes approaching 1,000 litres.

<span class="mw-page-title-main">Ultrasonic testing</span> Non-destructive material testing using ultrasonic waves

Ultrasonic testing (UT) is a family of non-destructive testing techniques based on the propagation of ultrasonic waves in the object or material tested. In most common UT applications, very short ultrasonic pulse waves with centre frequencies ranging from 0.1-15 MHz and occasionally up to 50 MHz, are transmitted into materials to detect internal flaws or to characterize materials. A common example is ultrasonic thickness measurement, which tests the thickness of the test object, for example, to monitor pipework corrosion and erosion. Ultrasonic testing is extensively used to detect flaws in welds.

<span class="mw-page-title-main">Microfabrication</span> Fabrication at micrometre scales and smaller

Microfabrication is the process of fabricating miniature structures of micrometre scales and smaller. Historically, the earliest microfabrication processes were used for integrated circuit fabrication, also known as "semiconductor manufacturing" or "semiconductor device fabrication". In the last two decades, microelectromechanical systems (MEMS), microsystems, micromachines and their subfields have re-used, adapted or extended microfabrication methods. These subfields include microfluidics/lab-on-a-chip, optical MEMS, RF MEMS, PowerMEMS, BioMEMS and their extension into nanoscale. The production of flat-panel displays and solar cells also uses similar techniques.

A thin-film bulk acoustic resonator is a device consisting of a piezoelectric material manufactured by thin film methods between two conductive – typically metallic – electrodes and acoustically isolated from the surrounding medium. The operation is based on the piezoelectricity of the piezolayer between the electrodes.

Sound from ultrasound is the name given here to the generation of audible sound from modulated ultrasound without using an active receiver. This happens when the modulated ultrasound passes through a nonlinear medium which acts, intentionally or unintentionally, as a demodulator.

<span class="mw-page-title-main">Ultrasonic transducer</span> Acoustic sensor

Ultrasonic transducers and ultrasonic sensors are devices that generate or sense ultrasound energy. They can be divided into three broad categories: transmitters, receivers and transceivers. Transmitters convert electrical signals into ultrasound, receivers convert ultrasound into electrical signals, and transceivers can both transmit and receive ultrasound.

<span class="mw-page-title-main">Ultrasonic horn</span>

An ultrasonic horn is a tapering metal bar commonly used for augmenting the oscillation displacement amplitude provided by an ultrasonic transducer operating at the low end of the ultrasonic frequency spectrum. The device is necessary because the amplitudes provided by the transducers themselves are insufficient for most practical applications of power ultrasound. Another function of the ultrasonic horn is to efficiently transfer the acoustic energy from the ultrasonic transducer into the treated media, which may be solid or liquid. Ultrasonic processing of liquids relies of intense shear forces and extreme local conditions generated by acoustic cavitation.

Ultrasonic soldering is a flux-less soldering process that uses ultrasonic energy, without the need for chemicals to solder materials, such as glass, ceramics, and composites, hard to solder metals and other sensitive components which cannot be soldered using conventional means.

<span class="mw-page-title-main">Ultrasonic nozzle</span> Type of spray nozzle

Ultrasonic nozzles are a type of spray nozzle that use high frequency vibrations produced by piezoelectric transducers acting upon the nozzle tip that create capillary waves in a liquid film. Once the amplitude of the capillary waves reaches a critical height, they become too tall to support themselves and tiny droplets fall off the tip of each wave resulting in atomization.

Capacitive micromachined ultrasonic transducers (CMUT) are a relatively new concept in the field of ultrasonic transducers. Most of the commercial ultrasonic transducers today are based on piezoelectricity. In CMUTs, the energy transduction is due to change in capacitance. CMUTs are constructed on silicon using micromachining techniques. A cavity is formed in a silicon substrate, and a thin layer suspended on the top of the cavity serves as a membrane on which a metallized layer acts an electrode, together with the silicon substrate which serves as a bottom electrode.

Surface acoustic wave sensors are a class of microelectromechanical systems (MEMS) which rely on the modulation of surface acoustic waves to sense a physical phenomenon. The sensor transduces an input electrical signal into a mechanical wave which, unlike an electrical signal, can be easily influenced by physical phenomena. The device then transduces this wave back into an electrical signal. Changes in amplitude, phase, frequency, or time-delay between the input and output electrical signals can be used to measure the presence of the desired phenomenon.

Reflectometry is a general term for the use of the reflection of waves or pulses at surfaces and interfaces to detect or characterize objects, sometimes to detect anomalies as in fault detection and medical diagnosis.

Ultrasonic antifouling is a technology that uses high frequency sound (ultrasound) to prevent or reduce biofouling on underwater structures, surfaces, and medium. Ultrasound is just high frequency sound. Ultrasound has the same physical properties as human-audible sound. The method has two primary forms: sub-cavitation intensity and cavitation intensity. Sub-cavitation methods create high frequency vibrations, whilst cavitation methods cause more destructive microscopic pressure changes. Both methods inhibit or prevent biofouling by algae and other single-celled organisms.

References

  1. 1 2 Nagarajan, R.; Awad, S.; Gopi, K. R. (2011). "Chapter 2 - Megasonic Cleaning". In Kohli, Rajiv; Mittal, K. L. (eds.). Developments in Surface Contamination and Cleaning. Oxford: William Andrew Publishing. pp. 31–62. ISBN   978-1-4377-7885-4 . Retrieved 2023-10-15.
  2. 1 2 Kanegsberg, Barbara; Kanegsberg, Edward (2011). Handbook for Critical Cleaning (2nd ed.). CRC Press. pp. 245–247. ISBN   978-1-4398-2828-1.
  3. Kanegsberg, Barbara; Kanegsberg, Edward (2001). Handbook for Critical Cleaning (2nd ed.). CRC Press. p. 497. ISBN   978-1-4200-3982-5.
  4. Busnaina, Ahmed A.; Kashkoush, Ismail I.; Gale, Glenn W. (1995). "An Experimental Study of Megasonic Cleaning of Silicon Wafers". Journal of the Electrochemical Society . 142 (8): 2812–2817. Bibcode:1995JElS..142.2812B. doi:10.1149/1.2050096.
  5. Holsteyns, Frank; Janssens, Tom; Arnauts, Sophia; Van Der Putte, Wouter; Minsier, Vincent; Brunner, Johann; Straka, Joachim; Mertens, Paul W. (2007). "Ex Situ Bubble Generation, Enhancing the Particle Removal Rate for Single Wafer Megasonic Cleaning Processes". Solid State Phenomena. 134: 201–204. doi:10.4028/www.scientific.net/SSP.134.201.