Mergelyan's theorem

Last updated

Mergelyan's theorem is a result from approximation by polynomials in complex analysis proved by the Armenian mathematician Sergei Mergelyan in 1951.

Contents

Statement

Let be a compact subset of the complex plane such that is connected. Then, every continuous function , such that the restriction to is holomorphic, can be approximated uniformly on with polynomials. Here, denotes the interior of . [1] [2]

Mergelyan's theorem also holds for open Riemann surfaces

If is a compact set without holes in an open Riemann surface , then every function in can be approximated uniformly on by functions in . [2]

Mergelyan's theorem does not always hold in higher dimensions (spaces of several complex variables), but it has some consequences. [2]

History

Mergelyan's theorem is a generalization of the Weierstrass approximation theorem and Runge's theorem.

In the case that is not connected, in the initial approximation problem the polynomials have to be replaced by rational functions. An important step of the solution of this further rational approximation problem was also suggested by Mergelyan in 1952. Further deep results on rational approximation are due to, in particular, A. G. Vitushkin.

Weierstrass and Runge's theorems were put forward in 1885, while Mergelyan's theorem dates from 1951. After Weierstrass and Runge, many mathematicians (in particular Walsh, Keldysh, Lavrentyev, Hartogs, and Rosenthal) had been working on the same problem. The method of the proof suggested by Mergelyan is constructive, and remains the only known constructive proof of the result.[ citation needed ]

See also

Related Research Articles

<span class="mw-page-title-main">Complex analysis</span> Branch of mathematics studying functions of a complex variable

Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematical analysis that investigates functions of complex numbers. It is helpful in many branches of mathematics, including algebraic geometry, number theory, analytic combinatorics, and applied mathematics, as well as in physics, including the branches of hydrodynamics, thermodynamics, quantum mechanics, and twistor theory. By extension, use of complex analysis also has applications in engineering fields such as nuclear, aerospace, mechanical and electrical engineering.

<span class="mw-page-title-main">Riemann mapping theorem</span> Mathematical theorem

In complex analysis, the Riemann mapping theorem states that if is a non-empty simply connected open subset of the complex number plane which is not all of , then there exists a biholomorphic mapping from onto the open unit disk

In mathematics, the branch of real analysis studies the behavior of real numbers, sequences and series of real numbers, and real functions. Some particular properties of real-valued sequences and functions that real analysis studies include convergence, limits, continuity, smoothness, differentiability and integrability.

In mathematical analysis, the Weierstrass approximation theorem states that every continuous function defined on a closed interval [a, b] can be uniformly approximated as closely as desired by a polynomial function. Because polynomials are among the simplest functions, and because computers can directly evaluate polynomials, this theorem has both practical and theoretical relevance, especially in polynomial interpolation. The original version of this result was established by Karl Weierstrass in 1885 using the Weierstrass transform.

<span class="mw-page-title-main">Analytic function</span> Type of function in mathematics

In mathematics, an analytic function is a function that is locally given by a convergent power series. There exist both real analytic functions and complex analytic functions. Functions of each type are infinitely differentiable, but complex analytic functions exhibit properties that do not generally hold for real analytic functions.

In mathematics, complex geometry is the study of geometric structures and constructions arising out of, or described by, the complex numbers. In particular, complex geometry is concerned with the study of spaces such as complex manifolds and complex algebraic varieties, functions of several complex variables, and holomorphic constructions such as holomorphic vector bundles and coherent sheaves. Application of transcendental methods to algebraic geometry falls in this category, together with more geometric aspects of complex analysis.

The Riemann–Roch theorem is an important theorem in mathematics, specifically in complex analysis and algebraic geometry, for the computation of the dimension of the space of meromorphic functions with prescribed zeros and allowed poles. It relates the complex analysis of a connected compact Riemann surface with the surface's purely topological genus g, in a way that can be carried over into purely algebraic settings.

<span class="mw-page-title-main">Projective variety</span> Algebraic variety in a projective space

In algebraic geometry, a projective variety is an algebraic variety that is a closed subvariety of a projective space. That is, it is the zero-locus in of some finite family of homogeneous polynomials that generate a prime ideal, the defining ideal of the variety.

The theory of functions of several complex variables is the branch of mathematics dealing with functions defined on the complex coordinate space, that is, n-tuples of complex numbers. The name of the field dealing with the properties of these functions is called several complex variables, which the Mathematics Subject Classification has as a top-level heading.

In mathematics, in the theory of several complex variables and complex manifolds, a Stein manifold is a complex submanifold of the vector space of n complex dimensions. They were introduced by and named after Karl Stein. A Stein space is similar to a Stein manifold but is allowed to have singularities. Stein spaces are the analogues of affine varieties or affine schemes in algebraic geometry.

In complex analysis, an area of mathematics, Montel's theorem refers to one of two theorems about families of holomorphic functions. These are named after French mathematician Paul Montel, and give conditions under which a family of holomorphic functions is normal.

In mathematics, the Hirzebruch–Riemann–Roch theorem, named after Friedrich Hirzebruch, Bernhard Riemann, and Gustav Roch, is Hirzebruch's 1954 result generalizing the classical Riemann–Roch theorem on Riemann surfaces to all complex algebraic varieties of higher dimensions. The result paved the way for the Grothendieck–Hirzebruch–Riemann–Roch theorem proved about three years later.

<span class="mw-page-title-main">Runge's theorem</span>

In complex analysis, Runge's theorem is named after the German mathematician Carl Runge who first proved it in the year 1885. It states the following:

In topology and related areas of mathematics, a subset A of a topological space X is said to be dense in X if every point of X either belongs to A or else is arbitrarily "close" to a member of A — for instance, the rational numbers are a dense subset of the real numbers because every real number either is a rational number or has a rational number arbitrarily close to it. Formally, is dense in if the smallest closed subset of containing is itself.

In mathematics, the Oka coherence theorem, proved by Kiyoshi Oka, states that the sheaf of holomorphic functions on is coherent.

In mathematics, the Hartogs–Rosenthal theorem is a classical result in complex analysis on the uniform approximation of continuous functions on compact subsets of the complex plane by rational functions. The theorem was proved in 1931 by the German mathematicians Friedrich Hartogs and Arthur Rosenthal and has been widely applied, particularly in operator theory.

In mathematics, and especially differential and algebraic geometry, K-stability is an algebro-geometric stability condition, for complex manifolds and complex algebraic varieties. The notion of K-stability was first introduced by Gang Tian and reformulated more algebraically later by Simon Donaldson. The definition was inspired by a comparison to geometric invariant theory (GIT) stability. In the special case of Fano varieties, K-stability precisely characterises the existence of Kähler–Einstein metrics. More generally, on any compact complex manifold, K-stability is conjectured to be equivalent to the existence of constant scalar curvature Kähler metrics.

In mathematics, especially the theory of several complex variables, the Oka–Weil theorem is a result about the uniform convergence of holomorphic functions on Stein spaces due to Kiyoshi Oka and André Weil.

This is a glossary of concepts and results in real analysis and complex analysis in mathematics.

References

  1. Forstnerič, Franc (2019). "Mergelyan's and Arakelian's theorems for manifold-valued maps". Moscow Mathematical Journal. 19 (3): 465–484. arXiv: 1801.04773 . doi:10.17323/1609-4514-2019-19-3-465-484. MR   3993004.
  2. 1 2 3 Fornaess, J.E.; Forstneric, F; Wold, E.F (2020). "The Legacy of Weierstrass, Runge, Oka–Weil, and Mergelyan". In Breaz, Daniel; Rassias, Michael Th. (eds.). Advancements in Complex Analysis – Holomorphic Approximation. Springer Nature. pp. 133–192. arXiv: 1802.03924 . doi:10.1007/978-3-030-40120-7. ISBN   978-3-030-40119-1. S2CID   220266044.

Further reading