Meshulam's game

Last updated

In graph theory, Meshulam's game is a game used to explain a theorem of Roy Meshulam [1] related to the homological connectivity of the independence complex of a graph, which is the smallest index k such that all reduced homological groups up to and including k are trivial. The formulation of this theorem as a game is due to Aharoni, Berger and Ziv. [2] [3]

Contents

Description

The game-board is a graph G. It is a zero-sum game for two players, CON and NON. CON wants to show that I(G), the independence complex of G, has a high connectivity; NON wants to prove the opposite.

At his turn, CON chooses an edge e from the remaining graph. NON then chooses one of two options:

The score of CON is defined as follows:

For every given graph G, the game value on G (i.e., the score of CON when both sides play optimally) is denoted by Ψ(G).

Game value and homological connectivity

Meshulam [1] proved that, for every graph G:

where is the homological connectivity of plus 2.

Examples

  1. If G is the empty graph, then Ψ(G) = 0, since no explosions are needed.
  2. If G has k connected components, then Ψ(G) ≥ k. Regardless of the order in which CON offers edges, each explosion made by NON destroys vertices in a single component, so NON needs at least k explosions to destroy all vertices.
  3. If G is a union of k vertex-disjoint cliques, each of which contains at least two vertices, then Ψ(G) = k, since each explosion completely destroys a single clique.
  4. If G has an independence domination number of at least k, , then . Proof: Let A be an independent set with domination number at least k. CON starts by offering all edges (a,b) where a is in A. If NON disconnects all such edges, then the vertices of A remain isolated so CON's score is infinity. If NON explodes such an edge, then the explosion removes from A only the vertices that are adjacent by b (the explosion at a does not destroy vertices of A, since A is an independent set). Therefore, the remaining vertices of A require at least k-1 vertices to dominate, so the domination number of A decreased by at most 1. Therefore, NON needs at least k explosions to destroy all vertices of A. This proves that .
    • Note: this also implies that , where is the line graph of G, and is the size of the largest matching in G. This is because the matchings in G are the independent sets in L(G). Each edge in G is a vertex in L(G), and it dominates at most two edges in the matching (= vertices in the independent set). [3]
    • Similarly, when H is an r-partite hypergraph, . [4]
  5. If G is the complete bipartite graph Kn,n, and L(G) is its line graph, then . [5] [6] Proof: L(G) can be seen as an n-by-n array of cells, where each row is a vertex on one side, each column is a vertex on the other side, and each cell is an edge. In the graph L(G), each cell is a vertex, and each edge is a pair of two cells in the same column or the same row. CON starts by offering two cells in the same row; if NON explodes them, then CON offers two cells in the same column; if NON explodes them again, then the two explosions together destroy 3 rows and 3 columns. Therefore, at least explosions are required to remove all vertices.
    • Note: this result was generalized later: if F is any subgraph of Kn,n, then . [3] :Thm.3.10

Proof for the case 1

To illustrate the connection between Meshulam's game and connectivity, we prove it in the special case in which , which is the smallest possible value of . We prove that, in this case, , i.e., NON can always destroy the entire graph using at most one explosion.

means that is not connected. This means that there are two subsets of vertices, X and Y, where no edge in connects any vertex of X to any vertex of Y. But is the independence complex of G; so in G, every vertex of X is connected to every vertex of Y. Regardless of how CON plays, he must at some step select an edge between a vertex of X and a vertex of Y. NON can explode this edge and destroy the entire graph.

In general, the proof works only one way, that is, there may be graphs for which .

See also

Related Research Articles

<span class="mw-page-title-main">Feynman diagram</span> Pictorial representation of the behavior of subatomic particles

In theoretical physics, a Feynman diagram is a pictorial representation of the mathematical expressions describing the behavior and interaction of subatomic particles. The scheme is named after American physicist Richard Feynman, who introduced the diagrams in 1948. The interaction of subatomic particles can be complex and difficult to understand; Feynman diagrams give a simple visualization of what would otherwise be an arcane and abstract formula. According to David Kaiser, "Since the middle of the 20th century, theoretical physicists have increasingly turned to this tool to help them undertake critical calculations. Feynman diagrams have revolutionized nearly every aspect of theoretical physics." While the diagrams are applied primarily to quantum field theory, they can also be used in other areas of physics, such as solid-state theory. Frank Wilczek wrote that the calculations that won him the 2004 Nobel Prize in Physics "would have been literally unthinkable without Feynman diagrams, as would [Wilczek's] calculations that established a route to production and observation of the Higgs particle."

In mathematics, Hall's marriage theorem, proved by Philip Hall, is a theorem with two equivalent formulations. In each case, the theorem gives a necessary and sufficient condition for an object to exist:

<span class="mw-page-title-main">Hypergraph</span> Generalization of graph theory

In mathematics, a hypergraph is a generalization of a graph in which an edge can join any number of vertices. In contrast, in an ordinary graph, an edge connects exactly two vertices.

<span class="mw-page-title-main">Bipartite graph</span> Graph divided into two independent sets

In the mathematical field of graph theory, a bipartite graph is a graph whose vertices can be divided into two disjoint and independent sets and , that is, every edge connects a vertex in to one in . Vertex sets and are usually called the parts of the graph. Equivalently, a bipartite graph is a graph that does not contain any odd-length cycles.

<span class="mw-page-title-main">Abstract simplicial complex</span> Mathematical object

In combinatorics, an abstract simplicial complex (ASC), often called an abstract complex or just a complex, is a family of sets that is closed under taking subsets, i.e., every subset of a set in the family is also in the family. It is a purely combinatorial description of the geometric notion of a simplicial complex. For example, in a 2-dimensional simplicial complex, the sets in the family are the triangles, their edges, and their vertices.

<span class="mw-page-title-main">Degree (graph theory)</span> Number of edges touching a vertex in a graph

In graph theory, the degree of a vertex of a graph is the number of edges that are incident to the vertex; in a multigraph, a loop contributes 2 to a vertex's degree, for the two ends of the edge. The degree of a vertex is denoted or . The maximum degree of a graph is denoted by , and is the maximum of 's vertices' degrees. The minimum degree of a graph is denoted by , and is the minimum of 's vertices' degrees. In the multigraph shown on the right, the maximum degree is 5 and the minimum degree is 0.

<span class="mw-page-title-main">Clique complex</span> Abstract simplicial complex describing a graphs cliques

Clique complexes, independence complexes, flag complexes, Whitney complexes and conformal hypergraphs are closely related mathematical objects in graph theory and geometric topology that each describe the cliques of an undirected graph.

In extremal graph theory, the forbidden subgraph problem is the following problem: given a graph , find the maximal number of edges an -vertex graph can have such that it does not have a subgraph isomorphic to . In this context, is called a forbidden subgraph.

In the mathematical discipline of graph theory, a rainbow matching in an edge-colored graph is a matching in which all the edges have distinct colors.

Maximal entropy random walk (MERW) is a popular type of biased random walk on a graph, in which transition probabilities are chosen accordingly to the principle of maximum entropy, which says that the probability distribution which best represents the current state of knowledge is the one with largest entropy. While standard random walk chooses for every vertex uniform probability distribution among its outgoing edges, locally maximizing entropy rate, MERW maximizes it globally by assuming uniform probability distribution among all paths in a given graph.

In graph theory, a matching in a hypergraph is a set of hyperedges, in which every two hyperedges are disjoint. It is an extension of the notion of matching in a graph.

In the mathematical field of graph theory, Hall-type theorems for hypergraphs are several generalizations of Hall's marriage theorem from graphs to hypergraphs. Such theorems were proved by Ofra Kessler, Ron Aharoni, Penny Haxell, Roy Meshulam, and others.

In graph theory, perfect matching in high-degree hypergraphs is a research avenue trying to find sufficient conditions for existence of a perfect matching in a hypergraph, based only on the degree of vertices or subsets of them.

The independence complex of a graph is a mathematical object describing the independent sets of the graph. Formally, the independence complex of an undirected graph G, denoted by I(G), is an abstract simplicial complex (that is, a family of finite sets closed under the operation of taking subsets), formed by the sets of vertices in the independent sets of G. Any subset of an independent set is itself an independent set, so I(G) is indeed closed under taking subsets.

In graph theory, a rainbow-independent set (ISR) is an independent set in a graph, in which each vertex has a different color.

In algebraic topology, homological connectivity is a property describing a topological space based on its homology groups.

In graph theory, there are two related properties of a hypergraph that are called its "width". Given a hypergraph H = (V, E), we say that a set K of edges pins another set F of edges if every edge in F intersects some edge in K. Then:

A sparsity matroid is a mathematical structure that captures how densely a multigraph is populated with edges. To unpack this a little, sparsity is a measure of density of a graph that bounds the number of edges in any subgraph. The property of having a particular matroid as its density measure is invariant under graph isomorphisms and so it is a graph invariant.

In mathematics, the hypergraph regularity method is a powerful tool in extremal graph theory that refers to the combined application of the hypergraph regularity lemma and the associated counting lemma. It is a generalization of the graph regularity method, which refers to the use of Szemerédi's regularity and counting lemmas.

A chessboard complex is a particular kind of abstract simplicial complex, which has various applications in topological graph theory and algebraic topology. Informally, the (m, n)-chessboard complex contains all sets of positions on an m-by-n chessboard, where rooks can be placed without attacking each other. Equivalently, it is the matching complex of the (m, n)-complete bipartite graph, or the independence complex of the m-by-n rook's graph.

References

  1. 1 2 Meshulam, Roy (2003-05-01). "Domination numbers and homology". Journal of Combinatorial Theory, Series A. 102 (2): 321–330. doi: 10.1016/S0097-3165(03)00045-1 . ISSN   0097-3165.
  2. Aharoni, Ron; Berger, Eli; Ziv, Ran (2007-05-01). "Independent systems of representatives in weighted graphs". Combinatorica. 27 (3): 253–267. doi:10.1007/s00493-007-2086-y. ISSN   0209-9683. S2CID   43510417.
  3. 1 2 3 Aharoni, Ron; Berger, Eli; Kotlar, Dani; Ziv, Ran (2017-01-04). "On a conjecture of Stein". Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg. 87 (2): 203–211. doi:10.1007/s12188-016-0160-3. ISSN   0025-5858. S2CID   119139740.
  4. Haxell, Penny; Narins, Lothar; Szabó, Tibor (2018-08-01). "Extremal hypergraphs for Ryser's Conjecture". Journal of Combinatorial Theory, Series A. 158: 492–547. doi:10.1016/j.jcta.2018.04.004. ISSN   0097-3165.
  5. Björner, A.; Lovász, L.; Vrećica, S. T.; Živaljević, R. T. (1994). "Chessboard Complexes and Matching Complexes". Journal of the London Mathematical Society. 49 (1): 25–39. doi:10.1112/jlms/49.1.25. ISSN   1469-7750.
  6. Shareshian, John; Wachs, Michelle L. (2009-10-01). "Top homology of hypergraph matching complexes, p-cycle complexes and Quillen complexes of symmetric groups". Journal of Algebra. 322 (7): 2253–2271. arXiv: 0808.3114 . doi:10.1016/j.jalgebra.2008.11.042. ISSN   0021-8693. S2CID   5259429.