Metacetamol

Last updated
Metacetamol
Metacetamol-skeletal.svg
Clinical data
Other namesN-Acetyl-meta-aminophenol; AMAP; meta-acetyl-aminophenol; 3-hydroxyacetanilide
Identifiers
  • N-(3-Hydroxyphenyl)acetamide
CAS Number
PubChem CID
ChemSpider
UNII
ChEBI
ChEMBL
CompTox Dashboard (EPA)
ECHA InfoCard 100.009.717 OOjs UI icon edit-ltr-progressive.svg
Chemical and physical data
Formula C8H9NO2
Molar mass 151.165 g·mol−1
3D model (JSmol)
Melting point 146 to 149 °C (295 to 300 °F)
  • CC(=O)NC1=CC(=CC=C1)O
  • InChI=InChI=InChI=1S/C8H9NO2/c1-6(10)9-7-3-2-4-8(11)5-7/h2-5,11H,1H3,(H,9,10) Yes check.svgY
  • Key:QLNWXBAGRTUKKI-UHFFFAOYSA-N Yes check.svgY

Metacetamol (developmental code name BS-749), also known as 3-hydroxyacetanilide and AMAP, is a non-toxic regioisomer of paracetamol with analgesic and antipyretic properties, but has never been marketed as a drug. [1] [2]

Metacetamol is known to have several polymorphs. [3] Form II is metastable, while form I is stable. [3] Metacetamol polymorph II transforms to form I upon water moisture or direct contact with water and other popular solvents. [3] Metacetamol II form may be obtained on cooling in narrow temperature regime. [4]

Related Research Articles

<span class="mw-page-title-main">Microcline</span> Igneous rock-forming tectosilicate mineral

Microcline (KAlSi3O8) is an important igneous rock-forming tectosilicate mineral. It is a potassium-rich alkali feldspar. Microcline typically contains minor amounts of sodium. It is common in granite and pegmatites. Microcline forms during slow cooling of orthoclase; it is more stable at lower temperatures than orthoclase. Sanidine is a polymorph of alkali feldspar stable at yet higher temperature. Microcline may be clear, white, pale-yellow, brick-red, or green; it is generally characterized by cross-hatch twinning that forms as a result of the transformation of monoclinic orthoclase into triclinic microcline.

<span class="mw-page-title-main">Solubility</span> Capacity of a substance to dissolve in a homogeneous way

In chemistry, solubility is the ability of a substance, the solute, to form a solution with another substance, the solvent. Insolubility is the opposite property, the inability of the solute to form such a solution.

<span class="mw-page-title-main">Single-nucleotide polymorphism</span> Single nucleotide in genomic DNA at which different sequence alternatives exist

In genetics and bioinformatics, a single-nucleotide polymorphism is a germline substitution of a single nucleotide at a specific position in the genome. Although certain definitions require the substitution to be present in a sufficiently large fraction of the population, many publications do not apply such a frequency threshold.

<span class="mw-page-title-main">Dimethyl sulfoxide</span> Organosulfur chemical compound used as a solvent

Dimethyl sulfoxide (DMSO) is an organosulfur compound with the formula (CH3)2SO. This colorless liquid is the sulfoxide most widely used commercially. It is an important polar aprotic solvent that dissolves both polar and nonpolar compounds and is miscible in a wide range of organic solvents as well as water. It has a relatively high boiling point. DMSO is metabolised to compounds that leave a garlic-like taste in the mouth after DMSO is absorbed by skin.

<span class="mw-page-title-main">Angiotensin-converting enzyme</span> Mammalian protein found in humans

Angiotensin-converting enzyme, or ACE, is a central component of the renin–angiotensin system (RAS), which controls blood pressure by regulating the volume of fluids in the body. It converts the hormone angiotensin I to the active vasoconstrictor angiotensin II. Therefore, ACE indirectly increases blood pressure by causing blood vessels to constrict. ACE inhibitors are widely used as pharmaceutical drugs for treatment of cardiovascular diseases.

<span class="mw-page-title-main">Erythritol</span> Chemical compound

Erythritol (, ) is an organic compound, the naturally occurring achiral meso four-carbon sugar alcohol (or polyol). It is the reduced form of either D- or L-erythrose and one of the two reduced forms of erythrulose. It is used as a food additive and sugar substitute. It is synthesized from corn using enzymes and fermentation. Its formula is C
4
H
10
O
4
, or HO(CH2)(CHOH)2(CH2)OH.

<span class="mw-page-title-main">Lead(II) iodide</span> Chemical compound

Lead(II) iodide is a chemical compound with the formula PbI
2
. At room temperature, it is a bright yellow odorless crystalline solid, that becomes orange and red when heated. It was formerly called plumbous iodide.

In the physical sciences, a partition coefficient (P) or distribution coefficient (D) is the ratio of concentrations of a compound in a mixture of two immiscible solvents at equilibrium. This ratio is therefore a comparison of the solubilities of the solute in these two liquids. The partition coefficient generally refers to the concentration ratio of un-ionized species of compound, whereas the distribution coefficient refers to the concentration ratio of all species of the compound.

<span class="mw-page-title-main">Phenylacetone</span> Chemical compound

Phenylacetone, also known as phenyl-2-propanone, is an organic compound with the chemical formula C6H5CH2COCH3. It is a colorless oil that is soluble in organic solvents. It is a mono-substituted benzene derivative, consisting of an acetone attached to a phenyl group. As such, its systematic IUPAC name is 1-phenyl-2-propanone.

<span class="mw-page-title-main">Iron(II) fluoride</span> Chemical compound

Iron(II) fluoride or ferrous fluoride is an inorganic compound with the molecular formula FeF2. It forms a tetrahydrate FeF2·4H2O that is often referred to by the same names. The anhydrous and hydrated forms are white crystalline solids.

<span class="mw-page-title-main">Copper(I) cyanide</span> Chemical compound

Copper(I) cyanide is an inorganic compound with the formula CuCN. This off-white solid occurs in two polymorphs; impure samples can be green due to the presence of Cu(II) impurities. The compound is useful as a catalyst, in electroplating copper, and as a reagent in the preparation of nitriles.

In crystallography, polymorphism is the phenomenon where a compound or element can crystallize into more than one crystal structure.

<span class="mw-page-title-main">Polyamorphism</span> Ability of a substance to exist in more than one distinct amorphous state

Polyamorphism is the ability of a substance to exist in several different amorphous modifications. It is analogous to the polymorphism of crystalline materials. Many amorphous substances can exist with different amorphous characteristics. However, polyamorphism requires two distinct amorphous states with a clear, discontinuous (first-order) phase transition between them. When such a transition occurs between two stable liquid states, a polyamorphic transition may also be referred to as a liquid–liquid phase transition.

<span class="mw-page-title-main">N-acetyltransferase</span> Class of enzymes

N-acetyltransferase (NAT) is an enzyme that catalyzes the transfer of acetyl groups from acetyl-CoA to arylamines, arylhydroxylamines and arylhydrazines. They have wide specificity for aromatic amines, particularly serotonin, and can also catalyze acetyl transfer between arylamines without CoA. N-acetyltransferases are cytosolic enzymes found in the liver and many tissues of most mammalian species, except the dog and fox, which cannot acetylate xenobiotics.

<span class="mw-page-title-main">Thallium(I) chloride</span> Chemical compound

Thallium(I) chloride, also known as thallous chloride, is a chemical compound with the formula TlCl. This colourless salt is an intermediate in the isolation of thallium from its ores. Typically, an acidic solution of thallium(I) sulfate is treated with hydrochloric acid to precipitate insoluble thallium(I) chloride. This solid crystallizes in the caesium chloride motif.

<span class="mw-page-title-main">Flufenamic acid</span> Chemical compound

Flufenamic acid (FFA) is a member of the anthranilic acid derivatives class of nonsteroidal anti-inflammatory drugs (NSAIDs). Like other members of the class, it is a cyclooxygenase (COX) inhibitor, preventing the formation of prostaglandins. FFA is known to bind to and reduce the activity of prostaglandin F synthase and activate TRPC6.

<span class="mw-page-title-main">Beryllium bromide</span> Chemical compound

Beryllium bromide is the chemical compound with the formula BeBr2. It is very hygroscopic and dissolves well in water. The Be2+ cation, which is relevant to BeBr2, is characterized by the highest known charge density (Z/r = 6.45), making it one of the hardest cations and a very strong Lewis acid.

<span class="mw-page-title-main">Chirality</span> Difference in shape from a mirror image

Chirality is a property of asymmetry important in several branches of science. The word chirality is derived from the Greek χείρ (kheir), "hand", a familiar chiral object.

<span class="mw-page-title-main">Tetrahydrocannabinolic acid synthase</span> Enzyme

Tetrahydrocannabinolic acid (THCA) synthase is an enzyme responsible for catalyzing the formation of THCA from cannabigerolic acid (CBGA). THCA is the direct precursor of tetrahydrocannabinol (THC), the principal psychoactive component of cannabis, which is produced from various strains of Cannabis sativa. Therefore, THCA synthase is considered to be a key enzyme controlling cannabis psychoactivity. Polymorphisms of THCA synthase result in varying levels of THC in Cannabis plants, resulting in "drug-type" and "fiber-type" C. sativa varieties.

<span class="mw-page-title-main">Disappearing polymorph</span> Phenomenon in materials science

In materials science, a disappearing polymorph is a form of a crystal structure that is suddenly unable to be produced, instead transforming into a different crystal structure with the same chemical composition during nucleation. Sometimes the resulting transformation is extremely hard or impractical to reverse, because the new polymorph may be more stable. It is hypothesized that contact with a single microscopic seed crystal of the new polymorph can be enough to start a chain reaction causing the transformation of a much larger mass of material. Widespread contamination with such microscopic seed crystals may lead to the impression that the original polymorph has "disappeared". In a few cases such as progesterone and paroxetine hydrochloride, the disappearance is global, and it is suspected that it is because earth's atmosphere is permeated with tiny seed crystals. It is believed that seeds as small as a few million molecules is sufficient for converting one morph to another, making unwanted disappearance of morphs particularly difficult to prevent.

References

  1. Elks J (14 November 2014). The Dictionary of Drugs: Chemical Data: Chemical Data, Structures and Bibliographies. Springer. pp. 67–. ISBN   978-1-4757-2085-3.
  2. "CHEBI:76987 - metacetamol".
  3. 1 2 3 McGregor L, Rychkov DA, Coster PL, Day S, Drebushchak VA, Achkasov AF, et al. (2015). "A new polymorph of metacetamol" (PDF). CrystEngComm. 17 (32): 6183–6192. doi:10.1039/C5CE00910C. ISSN   1466-8033.
  4. Drebushchak VA, McGregor L, Rychkov DA (February 2017). "Cooling rate "window" in the crystallization of metacetamol form II". Journal of Thermal Analysis and Calorimetry. 127 (2): 1807–1814. doi:10.1007/s10973-016-5954-0. ISSN   1388-6150. S2CID   99391719.