In metadata, metadata discovery (also metadata harvesting) is the process of using automated tools to discover the semantics of a data element in data sets. This process usually ends with a set of mappings between the data source elements and a centralized metadata registry. Metadata discovery is also known as metadata scanning.
Data sets may be in a variety of different forms including:
There are distinct categories of automated metadata discovery:
Semantic matching attempts to use semantics to associate target data with registered data elements.
Statistical matching uses statistics about data sources data itself to derive similarities with registered data elements.
The following vendors (listed in alphabetical order) provide metadata discovery and metadata mapping software and solutions
The Semantic Web, sometimes known as Web 3.0, is an extension of the World Wide Web through standards set by the World Wide Web Consortium (W3C). The goal of the Semantic Web is to make Internet data machine-readable.
In metadata, the term data element is an atomic unit of data that has precise meaning or precise semantics. A data element has:
MPEG-7 is a multimedia content description standard. It was standardized in ISO/IEC 15938. This description will be associated with the content itself, to allow fast and efficient searching for material that is of interest to the user. MPEG-7 is formally called Multimedia Content Description Interface. Thus, it is not a standard which deals with the actual encoding of moving pictures and audio, like MPEG-1, MPEG-2 and MPEG-4. It uses XML to store metadata, and can be attached to timecode in order to tag particular events, or synchronise lyrics to a song, for example.
A data dictionary, or metadata repository, as defined in the IBM Dictionary of Computing, is a "centralized repository of information about data such as meaning, relationships to other data, origin, usage, and format". Oracle defines it as a collection of tables with metadata. The term can have one of several closely related meanings pertaining to databases and database management systems (DBMS):
In computing and data management, data mapping is the process of creating data element mappings between two distinct data models. Data mapping is used as a first step for a wide variety of data integration tasks, including:
A metadata registry is a central location in an organization where metadata definitions are stored and maintained in a controlled method.
The ISO/IEC 11179 metadata registry (MDR) standard is an international ISO/IEC standard for representing metadata for an organization in a metadata registry. It documents the standardization and registration of metadata to make data understandable and shareable.
A representation term is a word, or a combination of words, that semantically represent the data type of a data element. A representation term is commonly referred to as a class word by those familiar with data dictionaries. ISO/IEC 11179-5:2005 defines representation term as a designation of an instance of a representation class As used in ISO/IEC 11179, the representation term is that part of a data element name that provides a semantic pointer to the underlying data type. A Representation class is a class of representations. This representation class provides a way to classify or group data elements.
The semantic spectrum, sometimes referred to as the ontology spectrum, the smart data continuum, or semantic precision, is a series of increasingly precise or rather semantically expressive definitions for data elements in knowledge representations, especially for machine use.
SPARQL is an RDF query language—that is, a semantic query language for databases—able to retrieve and manipulate data stored in Resource Description Framework (RDF) format. It was made a standard by the RDF Data Access Working Group (DAWG) of the World Wide Web Consortium, and is recognized as one of the key technologies of the semantic web. On 15 January 2008, SPARQL 1.0 was acknowledged by W3C as an official recommendation, and SPARQL 1.1 in March, 2013.
In metadata, a data element definition is a human readable phrase or sentence associated with a data element within a data dictionary that describes the meaning or semantics of a data element.
Semantic translation is the process of using semantic information to aid in the translation of data in one representation or data model to another representation or data model. Semantic translation takes advantage of semantics that associate meaning with individual data elements in one dictionary to create an equivalent meaning in a second system.
Metadata publishing is the process of making metadata data elements available to external users, both people and machines using a formal review process and a commitment to change control processes.
Semantic integration is the process of interrelating information from diverse sources, for example calendars and to do lists, email archives, presence information, documents of all sorts, contacts, search results, and advertising and marketing relevance derived from them. In this regard, semantics focuses on the organization of and action upon information by acting as an intermediary between heterogeneous data sources, which may conflict not only by structure but also context or value.
The AgMES initiative was developed by the Food and Agriculture Organization (FAO) of the United Nations and aims to encompass issues of semantic standards in the domain of agriculture with respect to description, resource discovery, interoperability, and data exchange for different types of information resources.
Geospatial metadata is a type of metadata applicable to geographic data and information. Such objects may be stored in a geographic information system (GIS) or may simply be documents, data-sets, images or other objects, services, or related items that exist in some other native environment but whose features may be appropriate to describe in a (geographic) metadata catalog.
The terms schema matching and mapping are often used interchangeably for a database process. For this article, we differentiate the two as follows: schema matching is the process of identifying that two objects are semantically related while mapping refers to the transformations between the objects. For example, in the two schemas DB1.Student and DB2.Grad-Student ; possible matches would be: DB1.Student ≈ DB2.Grad-Student; DB1.SSN = DB2.ID etc. and possible transformations or mappings would be: DB1.Marks to DB2.Grades.
Metadata is "data that provides information about other data", but not the content of the data itself, such as the text of a message or the image itself. There are many distinct types of metadata, including:
Knowledge extraction is the creation of knowledge from structured and unstructured sources. The resulting knowledge needs to be in a machine-readable and machine-interpretable format and must represent knowledge in a manner that facilitates inferencing. Although it is methodically similar to information extraction (NLP) and ETL, the main criterion is that the extraction result goes beyond the creation of structured information or the transformation into a relational schema. It requires either the reuse of existing formal knowledge or the generation of a schema based on the source data.
The following is provided as an overview of and topical guide to databases:
{{citation}}
: CS1 maint: multiple names: authors list (link)