Metaplectic structure

Last updated

In differential geometry, a metaplectic structure is the symplectic analog of spin structure on orientable Riemannian manifolds. A metaplectic structure on a symplectic manifold allows one to define the symplectic spinor bundle, which is the Hilbert space bundle associated to the metaplectic structure via the metaplectic representation, giving rise to the notion of a symplectic spinor field in differential geometry.

Contents

Symplectic spin structures have wide applications to mathematical physics, in particular to quantum field theory where they are an essential ingredient in establishing the idea that symplectic spin geometry and symplectic Dirac operators may give valuable tools in symplectic geometry and symplectic topology. They are also of purely mathematical interest in differential geometry, algebraic topology, and K theory. They form the foundation for symplectic spin geometry.

Formal definition

A metaplectic structure [1] on a symplectic manifold is an equivariant lift of the symplectic frame bundle with respect to the double covering In other words, a pair is a metaplectic structure on the principal bundle when

a) is a principal -bundle over ,
b) is an equivariant -fold covering map such that
and for all and

The principal bundle is also called the bundle of metaplectic frames over .

Two metaplectic structures and on the same symplectic manifold are called equivalent if there exists a -equivariant map such that

and for all and

Of course, in this case and are two equivalent double coverings of the symplectic frame -bundle of the given symplectic manifold .

Obstruction

Since every symplectic manifold is necessarily of even dimension and orientable, one can prove that the topological obstruction to the existence of metaplectic structures is precisely the same as in Riemannian spin geometry. [2] In other words, a symplectic manifold admits a metaplectic structures if and only if the second Stiefel-Whitney class of vanishes. In fact, the modulo reduction of the first Chern class is the second Stiefel-Whitney class . Hence, admits metaplectic structures if and only if is even, i.e., if and only if is zero.

If this is the case, the isomorphy classes of metaplectic structures on are classified by the first cohomology group of with -coefficients.

As the manifold is assumed to be oriented, the first Stiefel-Whitney class of vanishes too.

Examples

Manifolds admitting a metaplectic structure

See also

Notes

  1. Habermann, Katharina; Habermann, Lutz (2006), Introduction to Symplectic Dirac Operators, Springer-Verlag, ISBN   978-3-540-33420-0 page 35
  2. M. Forger, H. Hess (1979). "Universal metaplectic structures and geometric quantization" (PDF). Commun. Math. Phys. 64: 269–278. doi:10.1007/bf01221734.

Related Research Articles

In differential geometry, a subject of mathematics, a symplectic manifold is a smooth manifold, , equipped with a closed nondegenerate differential 2-form , called the symplectic form. The study of symplectic manifolds is called symplectic geometry or symplectic topology. Symplectic manifolds arise naturally in abstract formulations of classical mechanics and analytical mechanics as the cotangent bundles of manifolds. For example, in the Hamiltonian formulation of classical mechanics, which provides one of the major motivations for the field, the set of all possible configurations of a system is modeled as a manifold, and this manifold's cotangent bundle describes the phase space of the system.

Orthogonal group Group of isometries of a Euclidean vector space or, more generally, of a vector space equipped with a quadratic form

In mathematics, the orthogonal group in dimension n, denoted O(n), is the group of distance-preserving transformations of a Euclidean space of dimension n that preserve a fixed point, where the group operation is given by composing transformations. The orthogonal group is sometimes called the general orthogonal group, by analogy with the general linear group. Equivalently, it is the group of n×n orthogonal matrices, where the group operation is given by matrix multiplication. The orthogonal group is an algebraic group and a Lie group. It is compact.

Symplectic group group which is closed and nondegenerate

In mathematics, the name symplectic group can refer to two different, but closely related, collections of mathematical groups, denoted Sp(2n, F) and Sp(n) for positive integer n and field F. The latter is called the compact symplectic group. Many authors prefer slightly different notations, usually differing by factors of 2. The notation used here is consistent with the size of the most common matrices which represent the groups. In Cartan's classification of the simple Lie algebras, the Lie algebra of the complex group Sp(2n, C) is denoted Cn, and Sp(n) is the compact real form of Sp(2n, C). Note that when we refer to the (compact) symplectic group it is implied that we are talking about the collection of (compact) symplectic groups, indexed by their dimension n.

In mathematics, especially differential geometry, the cotangent bundle of a smooth manifold is the vector bundle of all the cotangent spaces at every point in the manifold. It may be described also as the dual bundle to the tangent bundle. This may be generalized to categories with more structure than smooth manifolds, such as complex manifolds, or algebraic varieties or schemes. In the smooth case, any Riemannian metric or symplectic form gives an isomorphism between the cotangent bundle and the tangent bundle, but they are not in general isomorphic in other categories.

In differential geometry, given a spin structure on an -dimensional orientable Riemannian manifold one defines the spinor bundle to be the complex vector bundle associated to the corresponding principal bundle of spin frames over and the spin representation of its structure group on the space of spinors .

In mathematics, an almost complex manifold is a smooth manifold equipped with a smooth linear complex structure on each tangent space. Every complex manifold is an almost complex manifold, but there are almost complex manifolds that are not complex manifolds. Almost complex structures have important applications in symplectic geometry.

Holonomy Parallel transport matrix along a closed curve.Also called parallel propagator

In differential geometry, the holonomy of a connection on a smooth manifold is a general geometrical consequence of the curvature of the connection measuring the extent to which parallel transport around closed loops fails to preserve the geometrical data being transported. For flat connections, the associated holonomy is a type of monodromy and is an inherently global notion. For curved connections, holonomy has nontrivial local and global features.

In differential geometry, a Poisson structure on a smooth manifold is a Lie bracket on the algebra of smooth functions on , subject to the Leibniz rule

In mathematics, the Chern–Weil homomorphism is a basic construction in Chern–Weil theory that computes topological invariants of vector bundles and principal bundles on a smooth manifold M in terms of connections and curvature representing classes in the de Rham cohomology rings of M. That is, the theory forms a bridge between the areas of algebraic topology and differential geometry. It was developed in the late 1940s by Shiing-Shen Chern and André Weil, in the wake of proofs of the generalized Gauss–Bonnet theorem. This theory was an important step in the theory of characteristic classes.

In differential geometry, a G-structure on an n-manifold M, for a given structure group G, is a principal G-subbundle of the tangent frame bundle FM of M.

Grothendieck–Riemann–Roch theorem

In mathematics, specifically in algebraic geometry, the Grothendieck–Riemann–Roch theorem is a far-reaching result on coherent cohomology. It is a generalisation of the Hirzebruch–Riemann–Roch theorem, about complex manifolds, which is itself a generalisation of the classical Riemann–Roch theorem for line bundles on compact Riemann surfaces.

Blowing up

In mathematics, blowing up or blowup is a type of geometric transformation which replaces a subspace of a given space with all the directions pointing out of that subspace. For example, the blowup of a point in a plane replaces the point with the projectivized tangent space at that point. The metaphor is that of zooming in on a photograph to enlarge part of the picture, rather than referring to an explosion.

In mathematics, a volume form on a differentiable manifold is a top-dimensional form. Thus on a manifold of dimension , a volume form is an -form, a section of the line bundle . A manifold admits a nowhere-vanishing volume form if and only if it is orientable. An orientable manifold has infinitely many volume forms, since multiplying a volume form by a function yields another volume form. On non-orientable manifolds, one may instead define the weaker notion of a density.

In mathematics, the tautological one-form is a special 1-form defined on the cotangent bundle of a manifold . In physics, it is used to create a correspondence between the velocity of a point in a mechanical system and its momentum, thus providing a bridge between Lagrangian mechanics with Hamiltonian mechanics.

In differential geometry, a field of mathematics, a normal bundle is a particular kind of vector bundle, complementary to the tangent bundle, and coming from an embedding.

In differential geometry, a spin structure on an orientable Riemannian manifold (M, g) allows one to define associated spinor bundles, giving rise to the notion of a spinor in differential geometry.

In mathematics, specifically in symplectic geometry, the momentum map is a tool associated with a Hamiltonian action of a Lie group on a symplectic manifold, used to construct conserved quantities for the action. The momentum map generalizes the classical notions of linear and angular momentum. It is an essential ingredient in various constructions of symplectic manifolds, including symplectic (Marsden–Weinstein) quotients, discussed below, and symplectic cuts and sums.

In symplectic geometry, the symplectic frame bundle of a given symplectic manifold is the canonical principal -subbundle of the tangent frame bundle consisting of linear frames which are symplectic with respect to . In other words, an element of the symplectic frame bundle is a linear frame at point i.e. an ordered basis of tangent vectors at of the tangent vector space , satisfying

In differential geometry, given a metaplectic structure on a -dimensional symplectic manifold the symplectic spinor bundle is the Hilbert space bundle associated to the metaplectic structure via the metaplectic representation. The metaplectic representation of the metaplectic group — the two-fold covering of the symplectic group — gives rise to an infinite rank vector bundle; this is the symplectic spinor construction due to Bertram Kostant.

In differential geometry, the local twistor bundle is a specific vector bundle with connection that can be associated to any conformal manifold, at least locally. Intuitively, a local twistor is an association of a twistor space to each point of space-time, together with a conformally invariant connection that relates the twistor spaces at different points. This connection can have holonomy that obstructs the existence of "global" twistors.

References