Methylophaga sulfidovorans | |
---|---|
Scientific classification | |
Domain: | Bacteria |
Phylum: | Pseudomonadota |
Class: | Gammaproteobacteria |
Order: | Thiotrichales |
Family: | Piscirickettsiaceae |
Genus: | Methylophaga |
Species: | M. sulfidovorans |
Binomial name | |
Methylophaga sulfidovorans de Zwart et al. 1998 | |
Methylophaga sulfidovorans is an obligately methylotrophic, aerobic, dimethylsulfide-oxidizing bacterium. It is Gram-negative, oval, with strain RB-1. [1]
Methylotrophs are a diverse group of microorganisms that can use reduced one-carbon compounds, such as methanol or methane, as the carbon source for their growth; and multi-carbon compounds that contain no carbon-carbon bonds, such as dimethyl ether and dimethylamine. This group of microorganisms also includes those capable of assimilating reduced one-carbon compounds by way of carbon dioxide using the ribulose bisphosphate pathway. These organisms should not be confused with methanogens which on the contrary produce methane as a by-product from various one-carbon compounds such as carbon dioxide. Some methylotrophs can degrade the greenhouse gas methane, and in this case they are called methanotrophs. The abundance, purity, and low price of methanol compared to commonly used sugars make methylotrophs competent organisms for production of amino acids, vitamins, recombinant proteins, single-cell proteins, co-enzymes and cytochromes.
Sulfur-reducing bacteria are microorganisms able to reduce elemental sulfur (S0) to hydrogen sulfide (H2S). These microbes use inorganic sulfur compounds as electron acceptors to sustain several activities such as respiration, conserving energy and growth, in absence of oxygen. The final product or these processes, sulfide, has a considerable influence on the chemistry of the environment and, in addition, is used as electron donor for a large variety of microbial metabolisms. Several types of bacteria and many non-methanogenic archaea can reduce sulfur. Microbial sulfur reduction was already shown in early studies, which highlighted the first proof of S0 reduction in a vibrioid bacterium from mud, with sulfur as electron acceptor and H2 as electron donor. The first pure cultured species of sulfur-reducing bacteria, Desulfuromonas acetoxidans, was discovered in 1976 and described by Pfennig Norbert and Biebel Hanno as an anaerobic sulfur-reducing and acetate-oxidizing bacterium, not able to reduce sulfate. Only few taxa are true sulfur-reducing bacteria, using sulfur reduction as the only or main catabolic reaction. Normally, they couple this reaction with the oxidation of acetate, succinate or other organic compounds. In general, sulfate-reducing bacteria are able to use both sulfate and elemental sulfur as electron acceptors. Thanks to its abundancy and thermodynamic stability, sulfate is the most studied electron acceptor for anaerobic respiration that involves sulfur compounds. Elemental sulfur, however, is very abundant and important, especially in deep-sea hydrothermal vents, hot springs and other extreme environments, making its isolation more difficult. Some bacteria – such as Proteus, Campylobacter, Pseudomonas and Salmonella – have the ability to reduce sulfur, but can also use oxygen and other terminal electron acceptors.
Methylobacillus flagellatus is a species of aerobic bacteria.
The genus Methylophaga consists of halophilic methylotrophic members of the Gammaproteobacteria, all of which were isolated from marine or otherwise low water activity environments, such as the surface of marble or hypersaline lakes. The cells are rod-shaped. and are motile by a single polar flagellum.
Thioploca is a genus of filamentous sulphur-oxidizing bacteria which occurs along 3,000 kilometres (1,900 mi) of coast off the west of South America. Was discovered in 1907 by R. Lauterborn classified as belonging to the order Thiotrichales, part of the Gammaproteobacteria. They inhabit as well marine as freshwater environments, with vast communities present off the Pacific coast of South America and other areas with a high organic matter sedimentation and bottom waters rich in nitrate and poor in oxygen. A large vacuole occupies more than 80% of their cellular volume and is used as a storage for nitrate. This nitrate is used for the sulphur oxidation, an important characteristic of the genus. Due to their unique size in diameters, ranging from 15-40 µm, they are considered part of the largest bacteria known. Because they use both sulfur and nitrogen compounds they may provide an important link between the nitrogen and sulphur cycles. They secrete a sheath of mucus which they use as a tunnel to travel between the sulfide containing sediment and the nitrate containing sea water.
Hydrogenobacter thermophilus is an extremely thermophilic, straight rod (bacillus) bacterium. TK-6 is the type strain for this species. It is a Gram negative, non-motile, obligate chemolithoautotroph. It belongs to one of the earliest branching order of Bacteria. H. thermophilus TK-6 lives in soil that contains hot water. It was one of the first hydrogen oxidizing bacteria described leading to the discovery, and subsequent examination of many unique proteins involved in its metabolism. Its discovery contradicted the idea that no obligate hydrogen oxidizing bacteria existed, leading to a new understanding of this physiological group. Additionally, H. thermophilus contains a fatty acid composition that had not been observed before.
Synergistes jonesii is a species of bacteria, the type species of its genus. It is a rumen bacterium that degrades toxic pyridinediols including mimosine. It is obligately anaerobic, gram-negative and rod-shaped. It was discovered in 1981 by Raymond J. Jones in Hawaii and Jones' hypothesis was proven in 1986 by himself and R. G. Megarrity.
Desulfobacterium autotrophicum is a mesophilic sulfate-reducing bacterium. Its genome has been sequenced.
Acidithiobacillus thiooxidans, formerly known as Thiobacillus thiooxidans until its reclassification into the newly designated genus Acidithiobacillus of the Acidithiobacillia subclass of Proteobacteria, is a Gram-negative, rod-shaped bacterium that uses sulfur as its primary energy source. It is mesophilic, with a temperature optimum of 28 °C. This bacterium is commonly found in soil, sewer pipes, and cave biofilms called snottites. A. thiooxidans is used in the mining technique known as bioleaching, where metals are extracted from their ores through the action of microbes.
Thioalkalivibrio versutus is an obligately alkaliphilic and obligately chemolithoautotrophic sulfur-oxidizing bacteria. It was first isolated from soda lakes in northern Russia.
Desulfobacter latus is a sulfate-reducing bacteria, with type strain AcRS2.
Methylophaga marina is an obligately methylotrophic, Gram-negative, strictly aerobic, motile, rod-shaped bacteria, the type species of its genus. Its type strain is ATCC 35842.
Methylophaga thalassica is an obligately methylotrophic, Gram-negative, strictly aerobic, motile, rod-shaped bacteria. Its type strain is ATCC 33146.
Ancylobacter dichloromethanicus is an aerobic, Gram-negative bacteria from the family of Xanthobacteraceae which has been isolated from dichloromethane contaminated soil in Volgograd in Russia. Ancylobacter dichloromethanicus can use dichloromethane, methanol, formate and formaldehyde for its metabolism.
Methylobacterium bullatum is a Gram-negative, facultatively methylotrophic, strictly aerobic and non-spore-forming bacteria from the genus of Methylobacterium which has been isolated from the moss Funaria hygrometrica in the Bergpark Wilhelmshöhe near Kassel in Germany.
Thioalkalivibrio is a Gram-negative, mostly halophilic bacterial genus of the family Ectothiorhodospiraceae.
Methylophaga thiooxydans is a methylotrophic bacterium that requires high salt concentrations for growth. It was originally isolated from a culture of the algae Emiliania huxleyi, where it grows by breaking down dimethylsulfoniopropionate from E. hexleyi into dimethylsulfide and acrylate. M. thiooxydans has been implicated as a dominant organism in phytoplankton blooms, where it consumes dimethylsulfide, methanol and methyl bromide released by dying phytoplankton. It was also identified as one of the dominant organisms present in the plume following the Deepwater Horizon oil spill, and was identified as a major player in the breakdown of methanol in coastal surface water in the English channel.
Microbial oxidation of sulfur is the oxidation of sulfur by microorganisms to build their structural components. The oxidation of inorganic compounds is the strategy primarily used by chemolithotrophic microorganisms to obtain energy to survive, grow and reproduce. Some inorganic forms of reduced sulfur, mainly sulfide (H2S/HS−) and elemental sulfur (S0), can be oxidized by chemolithotrophic sulfur-oxidizing prokaryotes, usually coupled to the reduction of energy-rich oxygen (O2) or nitrate (NO3−). Anaerobic sulfur oxidizers include photolithoautotrophs that obtain their energy from sunlight, hydrogen from sulfide, and carbon from carbon dioxide (CO2).
"CandidatusThiodictyon syntrophicum" is a gram-negative bacterium classified within purple sulfur bacteria (PSB). "Ca. T. syntrophicum" grows best under micro-oxic and low light conditions. There has only been one successful enrichment of "Ca. T. syntrophicum"; "Ca. T. syntrophicum" strain Cad16T.
Ann Patricia Wood is a retired British biochemist and bacteriologist who specialized in the ecology, taxonomy and physiology of sulfur-oxidizing chemolithoautotrophic bacteria and how methylotrophic bacteria play a role in the degradation of odour causing compounds in the human mouth, vagina and skin. The bacterial genus Annwoodia was named to honor her contributions to microbial research in 2017.