![]() | This article has multiple issues. Please help improve it or discuss these issues on the talk page . (Learn how and when to remove these messages)
|
Michl Binderbauer | |
---|---|
Born | 1969 (age 55–56) |
Nationality | Austrian |
Education | University of California, Irvine, Ph.D. Plasma Physics 1996 |
Occupation(s) | CEO of TAE Technologies, inventor |
Years active | 1998–present |
Known for | Plasma physics and fusion research |
Michl Binderbauer is an Austrian-American physicist, and businessman. He is the CEO of TAE Technologies. [1] He holds 40 issued and pending U.S. patents plus a number of international technology patents. [2] Binderbauer has published papers on plasma, physics, and fusion.
Binderbauer joined TAE when it was founded in 1998 as CTO, a position he held for 17 years. In May 2017, he became president of TAE, [3] a position he held for 18 months before being appointed CEO in 2018. [4]
In his role as the architect of the firm's research and development program; Binderbauer helped lead the initiative to collaborate with Google in utilizing machine learning and artificial intelligence (AI) technology for fusion research. [5]
Binderbauer serves on the Board of Directors of both TAE Technologies and TAE Life Sciences. [6]
Binderbauer received a Bachelor of Science degree in Plasma Physics and a Master of Science degree in Physics from University of California, Irvine. [7] He received his Ph.D. in Plasma Physics from UC Irvine in 1996. [8] Binderbauer is a recipient of UC Irvine’s prestigious Lauds & Laurels Award [9] and was, in 2018, one of the inaugural inductees into UC Irvine’s School of Physical Sciences Hall of Fame. [10] He sits on the Board of UCI Beall Applied Innovation. [11]
Nuclear fusion is a reaction in which two or more atomic nuclei, combine to form one or more atomic nuclei and neutrons. The difference in mass between the reactants and products is manifested as either the release or absorption of energy. This difference in mass arises as a result of the difference in nuclear binding energy between the atomic nuclei before and after the fusion reaction. Nuclear fusion is the process that powers active or main-sequence stars and other high-magnitude stars, where large amounts of energy are released.
This timeline of nuclear fusion is an incomplete chronological summary of significant events in the study and use of nuclear fusion.
ITER is an international nuclear fusion research and engineering megaproject aimed at creating energy through a fusion process similar to that of the Sun. It is being built next to the Cadarache facility in southern France. Upon completion of construction of the main reactor and first plasma, planned for 2033–2034, ITER will be the largest of more than 100 fusion reactors built since the 1950s, with six times the plasma volume of JT-60SA in Japan, the largest tokamak operating today.
Inertial electrostatic confinement, or IEC, is a class of fusion power devices that use electric fields to confine the plasma rather than the more common approach using magnetic fields found in magnetic confinement fusion (MCF) designs. Most IEC devices directly accelerate their fuel to fusion conditions, thereby avoiding energy losses seen during the longer heating stages of MCF devices. In theory, this makes them more suitable for using alternative aneutronic fusion fuels, which offer a number of major practical benefits and makes IEC devices one of the more widely studied approaches to fusion.
Aneutronic fusion is any form of fusion power in which very little of the energy released is carried by neutrons. While the lowest-threshold nuclear fusion reactions release up to 80% of their energy in the form of neutrons, aneutronic reactions release energy in the form of charged particles, typically protons or alpha particles. Successful aneutronic fusion would greatly reduce problems associated with neutron radiation such as damaging ionizing radiation, neutron activation, reactor maintenance, and requirements for biological shielding, remote handling and safety.
Magnetic confinement fusion (MCF) is an approach to generate thermonuclear fusion power that uses magnetic fields to confine fusion fuel in the form of a plasma. Magnetic confinement is one of two major branches of controlled fusion research, along with inertial confinement fusion.
A field-reversed configuration (FRC) is a type of plasma device studied as a means of producing nuclear fusion. It confines a plasma on closed magnetic field lines without a central penetration. In an FRC, the plasma has the form of a self-stable torus, similar to a smoke ring.
General Fusion is a Canadian company based in Richmond, British Columbia, which is developing a fusion power technology based on magnetized target fusion (MTF). The firm was founded in 2002 by Dr. Michel Laberge. As of 2024, it has more than 150 employees.
George H. Miley is a professor emeritus of physics from the University of Illinois at Urbana–Champaign. Miley is a Guggenheim Fellow and Fellow of the American Nuclear Society, the American Physical Society and the Institute of Electrical and Electronics Engineers. He was Senior NATO Fellow from 1994 to 1995, received the Edward Teller Medal in 1995, the IEEE Nuclear and Plasma Science Award in Fusion Technology in 2003 and the Radiation Science and Technology Award in 2004. He holds several patents.
TAE Technologies, Inc., formerly Tri Alpha Energy, is an American company based in Foothill Ranch, California developing aneutronic fusion power. The company's design relies on an advanced beam-driven field-reversed configuration (FRC), which combines features from accelerator physics and other fusion concepts in a unique fashion, and is optimized for hydrogen-boron fuel, also known as proton-boron or p-11B. It regularly publishes theoretical and experimental results in academic journals with hundreds of publications and posters at scientific conferences and in a research library hosting these articles on its website. TAE has developed five generations of original fusion platforms with a sixth currently in development. It aims to manufacture a prototype commercial fusion reactor by 2030.
Direct energy conversion (DEC) or simply direct conversion converts a charged particle's kinetic energy into a voltage. It is a scheme for power extraction from nuclear fusion.
Helion Energy, Inc. is an American fusion research company, located in Everett, Washington. They are developing a magneto-inertial fusion technology to produce helium-3 and fusion power via aneutronic fusion, which could produce low-cost clean electric energy using a fuel that can be derived exclusively from water.
Norman Rostoker was a Canadian plasma physicist known for being a pioneer in developing clean plasma-based fusion energy. He co-founded TAE Technologies in 1998 and held 27 U.S. Patents on plasma-based fusion accelerators.
Robert W. Conn was president and chief executive officer of The Kavli Foundation from 2009 to 2020, a U.S. based foundation dedicated to the advancement of basic science research and public interest in science. A physicist and engineer, Conn was also the board chair of the Science Philanthropy Alliance, an organization that aims to increase private support for basic science research, and dean emeritus of the Jacobs School of Engineering at the University of California, San Diego. In the 1970s and 1980s, Conn participated in some of the earliest studies of fusion energy as a potential source of electricity, and he served on numerous federal panels, committees, and boards advising the government on the subject. In the early 1970s, he co-founded the Fusion Technology Institute at the University of Wisconsin-Madison (UW), and in the mid-1980s he led the formation of the Institute of Plasma and Fusion Research at the University of California, Los Angeles (UCLA). As a university administrator in the 1990s and early 2000s, Conn served as dean of the school of engineering at UC San Diego as it established several engineering institutes and programs, including the California Institute for Telecommunications and Information Technology, known as Calit2, the Center for Wireless Communications, and the Whitaker Center for Biomedical Engineering. While at UC San Diego he also led the effort to establish an endowment for the school of engineering, which began with major gifts from Irwin and Joan Jacobs. Irwin M. Jacobs is the co-founder and founding CEO of Qualcomm. While Conn was dean, the engineering school was renamed in 1998 the Irwin and Joan Jacobs School of Engineering at UC San Diego. Conn's experience in the private sector includes co-founding in 1986 Plasma & Materials Technologies, Inc. (PMT), and serving as managing director of Enterprise Partners Venture Capital (EPVC) from 2002 to 2008. Over the years he has served on numerous private and public company corporate boards. Conn joined The Kavli Foundation in 2009. He helped establish the Science Philanthropy Alliance in 2012.
Tihiro Ohkawa was a Japanese physicist whose field of work was in plasma physics and fusion power. He was a pioneer in developing ways to generate electricity by nuclear fusion when he worked at General Atomics. Ohkawa died September 27, 2014, in La Jolla, California, at the age of 86.
Colliding beam fusion (CBF), or colliding beam fusion reactor (CBFR), is a class of fusion power concepts that are based on two or more intersecting beams of fusion fuel ions that are independently accelerated to fusion energies using a variety of particle accelerator designs or other means. One of the beams may be replaced by a static target, in which case the approach is termed accelerator based fusion or beam-target fusion, but the physics is the same as colliding beams.
Patrick Henry Diamond is an American theoretical plasma physicist. He is currently a professor at the University of California, San Diego, and a director of the Fusion Theory Institute at the National Fusion Research Institute in Daejeon, South Korea, where the KSTAR Tokamak is operated.
Toshiki Tajima is a Japanese theoretical plasma physicist known for pioneering the laser wakefield acceleration technique with John M. Dawson in 1979. The technique is used to accelerate particles in a plasma and was experimentally realized in 1994, for which Tajima received several awards such as the Nishina Memorial Prize (2006), the Enrico Fermi Prize (2015), the Robert R. Wilson Prize (2019), the Hannes Alfvén Prize (2019) and the Charles Hard Townes Award (2020).
The history of nuclear fusion began early in the 20th century as an inquiry into how stars powered themselves and expanded to incorporate a broad inquiry into the nature of matter and energy, as potential applications expanded to include warfare, energy production and rocket propulsion.