Microcoil

Last updated
3D printing of a solenoid microcoil using a conductive mixture of polylactide and carbon nanotubes. [1]
Microcoils produced by electroplating copper on Spirulina bacteria. Spirulina-templated microcoils.jpg
Microcoils produced by electroplating copper on Spirulina bacteria.

A microcoil is a tiny electrical conductor such as a wire in the shape of a spiral or helix which could be a solenoid or a planar structure.

Contents

Uses

NMR spectroscopy and micro-MRI

One field where these are found is nuclear magnetic resonance (NMR) spectroscopy, where it identifies radio frequency (RF) coils that are smaller than 1 mm. [3]

The detection limits of micro-MRI or MRM can be pushed further by taking advantage of microsystem fabrication techniques. In general, the RF receiver coil should closely conform to the sample to ensure good detection sensitivity. A properly designed NMR probe will maximize both the observe factor, which is the ratio of the sample volume being observed by the RF coil to the total sample volume required for analysis, and the filling factor, the ratio of the sample volume being observed by the RF coil to the coil volume. [4]

The miniaturization of NMR probes thus involves two advantages:

  1. Increased sensitivity without which the analysis of such low concentration compounds would be impossible, and
  2. Increase of filling factor by matching the probe to the sample volume. [5] Still, the extraction of the NMR spectra of samples having smaller and smaller volumes is a real challenge. Either these reductions of volume are dictated by the difficulties of production of sufficiently large samples or by the necessities of miniaturization of the analysing system, in both cases a careful design of the radiofrequency coils, ensuring an optimum reception of the NMR signal, are required. [6]

Spin control

In the field of quantum sciences, microcoils play an increasing role for fast spin control in nanoscale devices as multi-qubit spin registers and quantum memories or for the actuation of single nuclear spins e.g. around a Nitrogen-vacancy center. [7] In contrast to traditional NMR, microcoils are used here as an actuator only. The nuclear spin signal is detected via the optical readout of a single electron spin.

Telemetry systems

Microcoils have found usefulness in telemetry systems, where planar microcoils are used to supply energy to miniaturized implants. [8]

Microcoil types

Different types of microcoils with different fabrication techniques are employed for NMR:

Solenoid microcoils

Is the classical geometry to create a magnetic field with an electric current. Even for a limited number of windings this geometry provides a reasonable homogeneous B1 field and a good filling factor is possible by winding the coil directly onto a holder containing the sample. Miniaturization to a scale of several hundred micrometers (μm) is not very difficult although the wire diameter (typically 20 to 50 μm) becomes very small and a freestanding coil is a very delicate object. [9] A reduction to below 100 μm diameter is possible but the machining and handling of such coils will be rather tedious. For this reason other microsystem fabrication technology such as bulk micromachining, LIGA and micro-injection molding should be applied. [5] For solenoid coils adding more turns to the coil will enhance the B1/i ratio and thus both the inductance and the signal response. At the same time the coil resistance will increase linearly, so the improvement in sensitivity will be proportional to the square root of the number of turns (n). At the same time we will have a larger ohmic heating at the center of the coil and an enhanced danger for arcing, so the optimum is generally found for only a limited number of turns. Besides RF performance, static field distortions due to susceptibility effects are an important factor in the design of microcoil probeheads.

Planar microcoils

Is the most common geometry used, based on a spiral design with the center winding contacted to the outside using a connection to another layer which is electrically isolated with a thin oxide layer. In this configuration the axis of the RF coil will be oriented perpendicular to the external static field B0.

Saddle microcoils

The saddle coil shows the most complex geometry of these three coil types. The B1 field is generated primarily by the four vertical wire segments. Because of this coil geometry, the B1 field of a saddle coil is more homogeneous in z direction than that of a planar coil. The saddle coil can be formed from wire, but it is also often etched from thin copper foil, which is then adhered to glass or PTFE tubing. The latter procedure leads to a high geometric precision, resulting in better B1 homogeneity. The saddle coil is easily accessible and provides a good ‘filling factor’ of the usable area in the magnet bore. For these reasons it is widely used in NMR microscopy. However, these advantages are achieved at the price of decreased sensitivity. Compared to a saddle coil, the sensitivity performance of a solenoidal coil of the same dimensions is approximately three times better. [10]

Self-assembled microcoils

Self-assembled rolled-up micro coils with diameters down to 50 μm have been developed for NMR microscopy. [11]

Related Research Articles

<span class="mw-page-title-main">Magnetic resonance imaging</span> Medical imaging technique

Magnetic resonance imaging (MRI) is a medical imaging technique used in radiology to form pictures of the anatomy and the physiological processes inside the body. MRI scanners use strong magnetic fields, magnetic field gradients, and radio waves to generate images of the organs in the body. MRI does not involve X-rays or the use of ionizing radiation, which distinguishes it from computed tomography (CT) and positron emission tomography (PET) scans. MRI is a medical application of nuclear magnetic resonance (NMR) which can also be used for imaging in other NMR applications, such as NMR spectroscopy.

In nuclear magnetic resonance (NMR) spectroscopy, the chemical shift is the resonant frequency of an atomic nucleus relative to a standard in a magnetic field. Often the position and number of chemical shifts are diagnostic of the structure of a molecule. Chemical shifts are also used to describe signals in other forms of spectroscopy such as photoemission spectroscopy.

<span class="mw-page-title-main">Nuclear magnetic resonance spectroscopy</span> Laboratory technique

Nuclear magnetic resonance spectroscopy, most commonly known as NMR spectroscopy or magnetic resonance spectroscopy (MRS), is a spectroscopic technique based on re-orientation of atomic nuclei with non-zero nuclear spins in an external magnetic field. This re-orientation occurs with absorption of electromagnetic radiation in the radio frequency region from roughly 4 to 900 MHz, which depends on the isotopic nature of the nucleus and increased proportionally to the strength of the external magnetic field. Notably, the resonance frequency of each NMR-active nucleus depends on its chemical environment. As a result, NMR spectra provide information about individual functional groups present in the sample, as well as about connections between nearby nuclei in the same molecule. As the NMR spectra are unique or highly characteristic to individual compounds and functional groups, NMR spectroscopy is one of the most important methods to identify molecular structures, particularly of organic compounds.

<span class="mw-page-title-main">Magic angle spinning</span>

In solid-state NMR spectroscopy, magic-angle spinning (MAS) is a technique routinely used to produce better resolution NMR spectra. MAS NMR consists in spinning the sample at the magic angle θm with respect to the direction of the magnetic field.

<span class="mw-page-title-main">Electron paramagnetic resonance</span> Technique to study materials that have unpaired electrons

Electron paramagnetic resonance (EPR) or electron spin resonance (ESR) spectroscopy is a method for studying materials that have unpaired electrons. The basic concepts of EPR are analogous to those of nuclear magnetic resonance (NMR), but the spins excited are those of the electrons instead of the atomic nuclei. EPR spectroscopy is particularly useful for studying metal complexes and organic radicals. EPR was first observed in Kazan State University by Soviet physicist Yevgeny Zavoisky in 1944, and was developed independently at the same time by Brebis Bleaney at the University of Oxford.

<span class="mw-page-title-main">Solid-state nuclear magnetic resonance</span>

Solid-state NMR (ssNMR) spectroscopy is a technique for characterizing atomic level structure in solid materials e.g. powders, single crystals and amorphous samples and tissues using nuclear magnetic resonance (NMR) spectroscopy. The anisotropic part of many spin interactions are present in solid-state NMR, unlike in solution-state NMR where rapid tumbling motion averages out many of the spin interactions. As a result, solid-state NMR spectra are characterised by larger linewidths than in solution state NMR, which can be utilized to give quantitative information on the molecular structure, conformation and dynamics of the material. Solid-state NMR is often combined with magic angle spinning to remove anisotropic interactions and improve the resolution as well as the sensitivity of the technique.

Carbon-13 (C13) nuclear magnetic resonance is the application of nuclear magnetic resonance (NMR) spectroscopy to carbon. It is analogous to proton NMR and allows the identification of carbon atoms in an organic molecule just as proton NMR identifies hydrogen atoms. 13C NMR detects only the 13
C
isotope. The main carbon isotope, 12
C
does not produce an NMR signal. Although ca. 1 mln. times less sensitive than 1H NMR spectroscopy, 13C NMR spectroscopy is widely used for characterizing organic and organometallic compounds, primarily because 1H-decoupled 13C-NMR spectra are more simple, have a greater sensitivity to differences in the chemical structure, and, thus, are better suited for identifying molecules in complex mixtures. At the same time, such spectra lack quantitative information about the atomic ratios of different types of carbon nuclei, because nuclear Overhauser effect used in 1H-decoupled 13C-NMR spectroscopy enhances the signals from carbon atoms with a larger number of hydrogen atoms attached to them more than from carbon atoms with a smaller number of H's, and because full relaxation of 13C nuclei is usually not attained, and the nuclei with shorter relaxation times produce more intense signals.

In MRI and NMR spectroscopy, an observable nuclear spin polarization (magnetization) is created by a homogeneous magnetic field. This field makes the magnetic dipole moments of the sample precess at the resonance (Larmor) frequency of the nuclei. At thermal equilibrium, nuclear spins precess randomly about the direction of the applied field. They become abruptly phase coherent when they are hit by radiofrequency (RF) pulses at the resonant frequency, created orthogonal to the field. The RF pulses cause the population of spin-states to be perturbed from their thermal equilibrium value. The generated transverse magnetization can then induce a signal in an RF coil that can be detected and amplified by an RF receiver. The return of the longitudinal component of the magnetization to its equilibrium value is termed spin-latticerelaxation while the loss of phase-coherence of the spins is termed spin-spin relaxation, which is manifest as an observed free induction decay (FID).

Magnetic resonance force microscopy (MRFM) is an imaging technique that acquires magnetic resonance images (MRI) at nanometer scales, and possibly at atomic scales in the future. MRFM is potentially able to observe protein structures which cannot be seen using X-ray crystallography and protein nuclear magnetic resonance spectroscopy. Detection of the magnetic spin of a single electron has been demonstrated using this technique. The sensitivity of a current MRFM microscope is 10 billion times greater than a medical MRI used in hospitals.

<span class="mw-page-title-main">Nuclear magnetic resonance quantum computer</span> Proposed spin-based quantum computer implementation

Nuclear magnetic resonance quantum computing (NMRQC) is one of the several proposed approaches for constructing a quantum computer, that uses the spin states of nuclei within molecules as qubits. The quantum states are probed through the nuclear magnetic resonances, allowing the system to be implemented as a variation of nuclear magnetic resonance spectroscopy. NMR differs from other implementations of quantum computers in that it uses an ensemble of systems, in this case molecules, rather than a single pure state.

<span class="mw-page-title-main">Spin echo</span> Response of spin to electromagnetic radiation

In magnetic resonance, a spin echo or Hahn echo is the refocusing of spin magnetisation by a pulse of resonant electromagnetic radiation. Modern nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) make use of this effect.

Nuclear magnetic resonance (NMR) in the geomagnetic field is conventionally referred to as Earth's field NMR (EFNMR). EFNMR is a special case of low field NMR.

<span class="mw-page-title-main">Zero field NMR</span> Acquisition of NMR spectra of chemicals

Zero- to ultralow-field (ZULF) NMR is the acquisition of nuclear magnetic resonance (NMR) spectra of chemicals with magnetically active nuclei in an environment carefully screened from magnetic fields. ZULF NMR experiments typically involve the use of passive or active shielding to attenuate Earth’s magnetic field. This is in contrast to the majority of NMR experiments which are performed in high magnetic fields provided by superconducting magnets. In ZULF experiments the sample is moved through a low field magnet into the "zero field" region where the dominant interactions are nuclear spin-spin couplings, and the coupling between spins and the external magnetic field is a perturbation to this. There are a number of advantages to operating in this regime: magnetic-susceptibility-induced line broadening is attenuated which reduces inhomogeneous broadening of the spectral lines for samples in heterogeneous environments. Another advantage is that the low frequency signals readily pass through conductive materials such as metals due to the increased skin depth; this is not the case for high-field NMR for which the sample containers are usually made of glass, quartz or ceramic. High-field NMR employs inductive detectors to pick up the radiofrequency signals, but this would be inefficient in ZULF NMR experiments since the signal frequencies are typically much lower. The development of highly sensitive magnetic sensors in the early 2000s including SQUIDs, magnetoresistive sensors, and SERF atomic magnetometers made it possible to detect NMR signals directly in the ZULF regime. Previous ZULF NMR experiments relied on indirect detection where the sample had to be shuttled from the shielded ZULF environment into a high magnetic field for detection with a conventional inductive pick-up coil. One successful implementation was using atomic magnetometers at zero magnetic field working with rubidium vapor cells to detect zero-field NMR.

In vivo magnetic resonance spectroscopy (MRS) is a specialized technique associated with magnetic resonance imaging (MRI).

<span class="mw-page-title-main">Nuclear magnetic resonance</span> Spectroscopic technique based on change of nuclear spin state

Nuclear magnetic resonance (NMR) is a physical phenomenon in which nuclei in a strong constant magnetic field are perturbed by a weak oscillating magnetic field and respond by producing an electromagnetic signal with a frequency characteristic of the magnetic field at the nucleus. This process occurs near resonance, when the oscillation frequency matches the intrinsic frequency of the nuclei, which depends on the strength of the static magnetic field, the chemical environment, and the magnetic properties of the isotope involved; in practical applications with static magnetic fields up to ca. 20 tesla, the frequency is similar to VHF and UHF television broadcasts (60–1000 MHz). NMR results from specific magnetic properties of certain atomic nuclei. Nuclear magnetic resonance spectroscopy is widely used to determine the structure of organic molecules in solution and study molecular physics and crystals as well as non-crystalline materials. NMR is also routinely used in advanced medical imaging techniques, such as in magnetic resonance imaging (MRI). The original application of NMR to condensed matter physics is nowadays mostly devoted to strongly correlated electron systems. It reveals large many-body couplings by fast broadband detection and it should not to be confused with solid state NMR, which aims at removing the effect of the same couplings by Magic Angle Spinning techniques.

Electron nuclear double resonance (ENDOR) is a magnetic resonance technique for elucidating the molecular and electronic structure of paramagnetic species. The technique was first introduced to resolve interactions in electron paramagnetic resonance (EPR) spectra. It is currently practiced in a variety of modalities, mainly in the areas of biophysics and heterogeneous catalysis.

<span class="mw-page-title-main">Physics of magnetic resonance imaging</span> Overview article

Magnetic resonance imaging (MRI) is a medical imaging technique mostly used in radiology and nuclear medicine in order to investigate the anatomy and physiology of the body, and to detect pathologies including tumors, inflammation, neurological conditions such as stroke, disorders of muscles and joints, and abnormalities in the heart and blood vessels among others. Contrast agents may be injected intravenously or into a joint to enhance the image and facilitate diagnosis. Unlike CT and X-ray, MRI uses no ionizing radiation and is, therefore, a safe procedure suitable for diagnosis in children and repeated runs. Patients with specific non-ferromagnetic metal implants, cochlear implants, and cardiac pacemakers nowadays may also have an MRI in spite of effects of the strong magnetic fields. This does not apply on older devices, and details for medical professionals are provided by the device's manufacturer.

Nitrogen-15 nuclear magnetic resonance spectroscopy is a version of nuclear magnetic resonance spectroscopy that examines samples containing the 15N nucleus. 15N NMR differs in several ways from the more common 13C and 1H NMR. To circumvent the difficulties associated with measurement of the quadrupolar, spin-1 14N nuclide, 15N NMR is employed in samples for detection since it has a ground-state spin of ½. Since14N is 99.64% abundant, incorporation of 15N into samples often requires novel synthetic techniques.

Cynthia Larive is an American scientist and academic administrator serving as the chancellor of University of California, Santa Cruz. Larive's research focuses on nuclear magnetic resonance spectroscopy (NMR) and mass spectrometry. She was previously a professor of chemistry and provost and executive vice chancellor at the University of California, Riverside. She is a fellow of AAAS, IUPAC and ACS, associate editor for the ACS journal Analytical Chemistry and editor of the Analytical Sciences Digital Library.

Adiabatic radio frequency (RF) pulses are used in magnetic resonance imaging (MRI) to achieve excitation that is insensitive to spatial inhomogeneities in the excitation field or off-resonances in the sampled object.

References

  1. Guo, Shuang-Zhuang; Yang, Xuelu; Heuzey, Marie-Claude; Therriault, Daniel (2015). "3D printing of a multifunctional nanocomposite helical liquid sensor". Nanoscale. 7 (15): 6451–6. Bibcode:2015Nanos...7.6451G. doi:10.1039/C5NR00278H. PMID   25793923.
  2. Kamata, Kaori; Piao, Zhenzi; Suzuki, Soichiro; Fujimori, Takahiro; Tajiri, Wataru; Nagai, Keiji; Iyoda, Tomokazu; Yamada, Atsushi; Hayakawa, Toshiaki; Ishiwara, Mitsuteru; Horaguchi, Satoshi; Belay, Amha; Tanaka, Takuo; Takano, Keisuke; Hangyo, Masanori (2014). "Spirulina-Templated Metal Microcoils with Controlled Helical Structures for THz Electromagnetic Responses". Scientific Reports. 4: 4919. Bibcode:2014NatSR...4E4919K. doi:10.1038/srep04919. PMC   4017220 . PMID   24815190.
  3. Webb, A.G. (2013). "Radiofrequency microcoils for magnetic resonance imaging and spectroscopy". Journal of Magnetic Resonance. 229: 55–66. Bibcode:2013JMagR.229...55W. doi:10.1016/j.jmr.2012.10.004. PMID   23142002.
  4. Boero, G.; Bouterfas, M.; Massin, C.; Vincent, F.; Besse, P.-A.; Popovic, R. S.; Schweiger, A. (2003). "Electron-spin resonance probe based on a 100 μm planar microcoil". Review of Scientific Instruments. 74 (11): 4794. Bibcode:2003RScI...74.4794B. doi:10.1063/1.1621064.
  5. 1 2 Klein, Mona J K; Ono, Takahito; Esashi, Masayoshi; Korvink, Jan G (2008). "Process for the fabrication of hollow core solenoidal microcoils in borosilicate glass". Journal of Micromechanics and Microengineering. 18 (7): 075002. Bibcode:2008JMiMi..18g5002K. doi:10.1088/0960-1317/18/7/075002. S2CID   135900633.
  6. Behrooz, Fateh (2006) Modeling, Simulation and Optimization of a Microcoil for MRI-Cell Imaging, Master Thesis, University of Freiburg, Germany
  7. Herb, Konstantin; Zopes, Jonathan; Cujia, Kristian; Degen, Christian (2020). "Broadband radio-frequency transmitter for fast nuclear spin control". Review of Scientific Instruments. 91 (11): 113106. arXiv: 2005.06837 . Bibcode:2020RScI...91k3106H. doi:10.1063/5.0013776. PMID   33261455. S2CID   227252470.
  8. Neagu, C.R.; Jansen, H.V.; Smith, A.; Gardeniers, J.G.E.; Elwenspoek, M.C. (1997). "Characterization of a planar microcoil for implantable microsystems". Sensors and Actuators A: Physical. 62 (1–3): 599–611. doi:10.1016/S0924-4247(97)01601-4.
  9. Bentum, P. J.; Janssen, J. W.; Kentgens, A. P. (2004). "Towards nuclear magnetic resonance micro-spectroscopy and micro-imaging". The Analyst. 129 (9): 793–803. Bibcode:2004Ana...129..793B. doi:10.1039/b404497p. hdl: 2066/60304 . PMID   15343393.
  10. Haase, A., Odoj, F., Von Kienlin, M., Warnking, J., Fidler, F., Weisser, A., Nittka, M., Rommel, E., Lanz, T., Kalusche, B. and Griswold, M. (2000). "NMR probeheads forin vivo applications". Concepts in Magnetic Resonance. 12 (6): 361–388. doi:10.1002/1099-0534(2000)12:6<361::AID-CMR1>3.0.CO;2-L.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  11. Lepucki, Piotr; Egunov, Aleksandr I.; Rosenkranz, Marco; Huber, Renato; Mirhajivarzaneh, Alaleh; Karnaushenko, Dmitry D.; Dioguardi, Adam P.; Karnaushenko, Daniil; Büchner, Bernd; Schmidt, Oliver G.; Grafe, Hans‐Joachim (January 2021). "Self‐Assembled Rolled‐Up Microcoils for nL Microfluidics NMR Spectroscopy". Advanced Materials Technologies. 6 (1): 2000679. doi:10.1002/admt.202000679. ISSN   2365-709X. S2CID   229390688.