Microprocessor complex subunit DGCR8

Last updated
DGCR8
Protein DGCR8 PDB 1x47.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases DGCR8 , C22orf12, DGCRK6, Gy1, pasha, Pasha, DGCR8 microprocessor complex subunit, microprocessor complex subunit
External IDs OMIM: 609030 MGI: 2151114 HomoloGene: 11223 GeneCards: DGCR8
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001190326
NM_022720

NM_033324

RefSeq (protein)

NP_001177255
NP_073557

NP_201581

Location (UCSC) Chr 22: 20.08 – 20.11 Mb n/a
PubMed search [2] [3]
Wikidata
View/Edit Human View/Edit Mouse

The microprocessor complex subunit DGCR8(DiGeorge syndrome critical region 8) is a protein that in humans is encoded by the DGCR8 gene. [4] In other animals, particularly the common model organisms Drosophila melanogaster and Caenorhabditis elegans , the protein is known as Pasha (partner of Drosha). [5] It is a required component of the RNA interference pathway.

Contents

Function

The subunit DGCR8 is localized to the cell nucleus and is required for microRNA (miRNA) processing. It binds to the other subunit Drosha, an RNase III enzyme, to form the microprocessor complex that cleaves a primary transcript known as pri-miRNA to a characteristic stem-loop structure known as a pre-miRNA, which is then further processed to miRNA fragments by the enzyme Dicer. DGCR8 contains an RNA-binding domain and is thought to bind pri-miRNA to stabilize it for processing by Drosha. [6]

DGCR8 is also required for some types of DNA repair. Removal of UV-induced DNA photoproducts, during transcription coupled nucleotide excision repair (TC-NER), depends on JNK phosphorylation of DGCR8 on serine 153. [7] While DGCR8 is known to function in microRNA biogenesis, this activity is not required for DGCR8-dependent removal of UV-induced photoproducts. [7] Nucleotide excision repair is also needed for repair of oxidative DNA damage due to hydrogen peroxide (H2O2), and DGCR8 depleted cells are sensitive to H2O2. [7]

Related Research Articles

microRNA Small non-coding ribonucleic acid molecule

MicroRNA (miRNA) are small, single-stranded, non-coding RNA molecules containing 21 to 23 nucleotides. Found in plants, animals and some viruses, miRNAs are involved in RNA silencing and post-transcriptional regulation of gene expression. miRNAs base-pair to complementary sequences in mRNA molecules, then silence said mRNA molecules by one or more of the following processes:

  1. Cleavage of the mRNA strand into two pieces,
  2. Destabilization of the mRNA by shortening its poly(A) tail, or
  3. Reducing translation of the mRNA into proteins.
<span class="mw-page-title-main">RNA polymerase</span> Enzyme that synthesizes RNA from DNA

In molecular biology, RNA polymerase, or more specifically DNA-directed/dependent RNA polymerase (DdRP), is an enzyme that catalyzes the chemical reactions that synthesize RNA from a DNA template.

<span class="mw-page-title-main">Dicer</span> Enzyme that cleaves double-stranded RNA (dsRNA) into short dsRNA fragments

Dicer, also known as endoribonuclease Dicer or helicase with RNase motif, is an enzyme that in humans is encoded by the DICER1 gene. Being part of the RNase III family, Dicer cleaves double-stranded RNA (dsRNA) and pre-microRNA (pre-miRNA) into short double-stranded RNA fragments called small interfering RNA and microRNA, respectively. These fragments are approximately 20–25 base pairs long with a two-base overhang on the 3′-end. Dicer facilitates the activation of the RNA-induced silencing complex (RISC), which is essential for RNA interference. RISC has a catalytic component Argonaute, which is an endonuclease capable of degrading messenger RNA (mRNA).

<span class="mw-page-title-main">DNA repair</span> Cellular mechanism

DNA repair is a collection of processes by which a cell identifies and corrects damage to the DNA molecules that encode its genome. In human cells, both normal metabolic activities and environmental factors such as radiation can cause DNA damage, resulting in tens of thousands of individual molecular lesions per cell per day. Many of these lesions cause structural damage to the DNA molecule and can alter or eliminate the cell's ability to transcribe the gene that the affected DNA encodes. Other lesions induce potentially harmful mutations in the cell's genome, which affect the survival of its daughter cells after it undergoes mitosis. As a consequence, the DNA repair process is constantly active as it responds to damage in the DNA structure. When normal repair processes fail, and when cellular apoptosis does not occur, irreparable DNA damage may occur. This can eventually lead to malignant tumors, or cancer as per the two-hit hypothesis.

<span class="mw-page-title-main">Nucleotide excision repair</span> DNA repair mechanism

Nucleotide excision repair is a DNA repair mechanism. DNA damage occurs constantly because of chemicals, radiation and other mutagens. Three excision repair pathways exist to repair single stranded DNA damage: Nucleotide excision repair (NER), base excision repair (BER), and DNA mismatch repair (MMR). While the BER pathway can recognize specific non-bulky lesions in DNA, it can correct only damaged bases that are removed by specific glycosylases. Similarly, the MMR pathway only targets mismatched Watson-Crick base pairs.

<span class="mw-page-title-main">XPB</span> Mammalian protein found in Homo sapiens

XPB is an ATP-dependent DNA helicase in humans that is a part of the TFIIH transcription factor complex.

c-Jun N-terminal kinases Chemical compounds

c-Jun N-terminal kinases (JNKs), were originally identified as kinases that bind and phosphorylate c-Jun on Ser-63 and Ser-73 within its transcriptional activation domain. They belong to the mitogen-activated protein kinase family, and are responsive to stress stimuli, such as cytokines, ultraviolet irradiation, heat shock, and osmotic shock. They also play a role in T cell differentiation and the cellular apoptosis pathway. Activation occurs through a dual phosphorylation of threonine (Thr) and tyrosine (Tyr) residues within a Thr-Pro-Tyr motif located in kinase subdomain VIII. Activation is carried out by two MAP kinase kinases, MKK4 and MKK7, and JNK can be inactivated by Ser/Thr and Tyr protein phosphatases. It has been suggested that this signaling pathway contributes to inflammatory responses in mammals and insects.

<span class="mw-page-title-main">Drosha</span> Ribonuclease III enzyme

Drosha is a Class 2 ribonuclease III enzyme that in humans is encoded by the DROSHA gene. It is the primary nuclease that executes the initiation step of miRNA processing in the nucleus. It works closely with DGCR8 and in correlation with Dicer. It has been found significant in clinical knowledge for cancer prognosis and HIV-1 replication.

Transcription factor II H (TFIIH) is an important protein complex, having roles in transcription of various protein-coding genes and DNA nucleotide excision repair (NER) pathways. TFIIH first came to light in 1989 when general transcription factor-δ or basic transcription factor 2 was characterized as an indispensable transcription factor in vitro. This factor was also isolated from yeast and finally named TFIIH in 1992.

<span class="mw-page-title-main">Replication protein A1</span> Protein-coding gene in the species Homo sapiens

Replication protein A 70 kDa DNA-binding subunit is a protein that in humans is encoded by the RPA1 gene.

<span class="mw-page-title-main">NEDD8</span>

NEDD8 is a protein that in humans is encoded by the NEDD8 gene. This ubiquitin-like (UBL) protein becomes covalently conjugated to a limited number of cellular proteins, in a process called NEDDylation similar to ubiquitination. Human NEDD8 shares 60% amino acid sequence identity to ubiquitin. The primary known substrates of NEDD8 modification are the cullin subunits of cullin-based E3 ubiquitin ligases, which are active only when NEDDylated. Their NEDDylation is critical for the recruitment of E2 to the ligase complex, thus facilitating ubiquitin conjugation. NEDD8 modification has therefore been implicated in cell cycle progression and cytoskeletal regulation.

<span class="mw-page-title-main">ERCC1</span> Protein-coding gene in the species Homo sapiens

DNA excision repair protein ERCC-1 is a protein that in humans is encoded by the ERCC1 gene. Together with ERCC4, ERCC1 forms the ERCC1-XPF enzyme complex that participates in DNA repair and DNA recombination.

<span class="mw-page-title-main">DDB2</span> Protein-coding gene in the species Homo sapiens

DNA damage-binding protein 2 is a protein that in humans is encoded by the DDB2 gene.

<span class="mw-page-title-main">RAD23B</span> Protein-coding gene in the species Homo sapiens

UV excision repair protein RAD23 homolog B is a protein that in humans is encoded by the RAD23B gene.

<span class="mw-page-title-main">XPC (gene)</span> Protein-coding gene in the species Homo sapiens

Xeroderma pigmentosum, complementation group C, also known as XPC, is a protein which in humans is encoded by the XPC gene. XPC is involved in the recognition of bulky DNA adducts in nucleotide excision repair. It is located on chromosome 3.

<span class="mw-page-title-main">ERCC8 (gene)</span> Protein-coding gene in humans

DNA excision repair protein ERCC-8 is a protein that in humans is encoded by the ERCC8 gene.

Post-transcriptional regulation is the control of gene expression at the RNA level. It occurs once the RNA polymerase has been attached to the gene's promoter and is synthesizing the nucleotide sequence. Therefore, as the name indicates, it occurs between the transcription phase and the translation phase of gene expression. These controls are critical for the regulation of many genes across human tissues. It also plays a big role in cell physiology, being implicated in pathologies such as cancer and neurodegenerative diseases.

<span class="mw-page-title-main">V. Narry Kim</span> South Korean biochemist (born 1969)

V. Narry Kim is a South Korean biochemist and microbiologist, best known for her work on microRNA biogenesis. Her pioneering studies have laid the groundwork for the biology of microRNA and contributed to the improvement of RNA interference technologies.

<span class="mw-page-title-main">Microprocessor complex</span>

The microprocessor complex is a protein complex involved in the early stages of processing microRNA (miRNA) and RNA interference (RNAi) in animal cells. The complex is minimally composed of the ribonuclease enzyme Drosha and the dimeric RNA-binding protein DGCR8, and cleaves primary miRNA substrates to pre-miRNA in the cell nucleus. Microprocessor is also the smaller of the two multi-protein complexes that contain human Drosha.

<span class="mw-page-title-main">Short interspersed nuclear element</span>

Short interspersed nuclear elements (SINEs) are non-autonomous, non-coding transposable elements (TEs) that are about 100 to 700 base pairs in length. They are a class of retrotransposons, DNA elements that amplify themselves throughout eukaryotic genomes, often through RNA intermediates. SINEs compose about 13% of the mammalian genome.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000128191 - Ensembl, May 2017
  2. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  3. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Entrez Gene: DGCR8 DiGeorge syndrome critical region gene 8".
  5. Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ (Nov 2004). "Processing of primary microRNAs by the Microprocessor complex". Nature. 432 (7014): 231–5. Bibcode:2004Natur.432..231D. doi:10.1038/nature03049. PMID   15531879. S2CID   4425505.
  6. Yeom KH, Lee Y, Han J, Suh MR, Kim VN (2006). "Characterization of DGCR8/Pasha, the essential cofactor for Drosha in primary miRNA processing". Nucleic Acids Research. 34 (16): 4622–9. doi:10.1093/nar/gkl458. PMC   1636349 . PMID   16963499.
  7. 1 2 3 Calses PC, Dhillon KK, Tucker N, Chi Y, Huang JW, Kawasumi M, Nghiem P, Wang Y, Clurman BE, Jacquemont C, Gafken PR, Sugasawa K, Saijo M, Taniguchi T (2017). "DGCR8 Mediates Repair of UV-Induced DNA Damage Independently of RNA Processing". Cell Rep. 19 (1): 162–174. doi:10.1016/j.celrep.2017.03.021. PMC   5423785 . PMID   28380355.

Further reading