Midsquare quadrilateral

Last updated

A midsquare quadrilateral (light blue), with its two equal-length perpendicular diagonals (black) and its midsquare (dark blue) Midsquare.svg
A midsquare quadrilateral (light blue), with its two equal-length perpendicular diagonals (black) and its midsquare (dark blue)
A midsquare quadrilateral (blue) with two squares having opposite sides as their diagonals (yellow and pink) Skewsquare.svg
A midsquare quadrilateral (blue) with two squares having opposite sides as their diagonals (yellow and pink)

In elementary geometry, a quadrilateral whose diagonals are perpendicular and of equal length has been called a midsquare quadrilateral (referring to the square formed by its four edge midpoints). [1] [2] These shapes are, by definition, simultaneously equidiagonal quadrilaterals and orthodiagonal quadrilaterals. [2] Older names for the same shape include pseudo-square, [3] [4] and skewsquare. [4]

According to Van Aubel's theorem, a quadrilateral of this special type can be formed from an arbitrary quadrilateral by placing squares on the four sides of and connecting the centers of the squares. [2] [5]

For any two opposite sides of a midsquare quadrilateral, the two squares having these sides as their diagonals intersect in a single vertex, called a focus of the quadrilateral. Conversely, if two squares intersect in a vertex, then their two diagonals disjoint from this vertex form two opposite sides of a (possibly non-convex) midsquare quadrilateral. [4] [1] The two foci and the two diagonal midpoints of a midsquare quadrilateral form the vertices of a square. Each focus lies on an angle bisector of the two diagonals and on the perpendicular bisectors of the two sides that are the diagonals of its squares. [4]

Midsquare quadrilaterals whose sides are not longer than the diagonals have the maximum area for their diameter among all quadrilaterals, solving the case of the biggest little polygon problem. The square is one such quadrilateral, but there are infinitely many others. [6]

Related Research Articles

<span class="mw-page-title-main">Quadrilateral</span> Polygon with four sides and four corners

In geometry a quadrilateral is a four-sided polygon, having four edges (sides) and four corners (vertices). The word is derived from the Latin words quadri, a variant of four, and latus, meaning "side". It is also called a tetragon, derived from Greek "tetra" meaning "four" and "gon" meaning "corner" or "angle", in analogy to other polygons. Since "gon" means "angle", it is analogously called a quadrangle, or 4-angle. A quadrilateral with vertices , , and is sometimes denoted as .

<span class="mw-page-title-main">Triangle</span> Shape with three sides

A triangle is a polygon with three corners and three sides, one of the basic shapes in geometry. The corners, also called vertices, are zero-dimensional points while the sides connecting them, also called edges, are one-dimensional line segments. A triangle has three internal angles, each one bounded by a pair of adjacent edges; the sum of angles of a triangle always equals a straight angle. The triangle is a plane figure and its interior is a planar region. Sometimes an arbitrary edge is chosen to be the base, in which case the opposite vertex is called the apex; the shortest segment between the base and apex is the height. The area of a triangle equals one-half the product of height and base length.

<span class="mw-page-title-main">Rectangle</span> Quadrilateral with four right angles

In Euclidean plane geometry, a rectangle is a rectilinear convex polygon or a quadrilateral with four right angles. It can also be defined as: an equiangular quadrilateral, since equiangular means that all of its angles are equal ; or a parallelogram containing a right angle. A rectangle with four sides of equal length is a square. The term "oblong" is used to refer to a non-square rectangle. A rectangle with vertices ABCD would be denoted as  ABCD.

<span class="mw-page-title-main">Perpendicular</span> Relationship between two lines that meet at a right angle (90 degrees)

In geometry, two geometric objects are perpendicular if their intersection forms right angles at the point of intersection called a foot. The condition of perpendicularity may be represented graphically using the perpendicular symbol, ⟂. Perpendicular intersections can happen between two lines, between a line and a plane, and between two planes.

<span class="mw-page-title-main">Kite (geometry)</span> Quadrilateral symmetric across a diagonal

In Euclidean geometry, a kite is a quadrilateral with reflection symmetry across a diagonal. Because of this symmetry, a kite has two equal angles and two pairs of adjacent equal-length sides. Kites are also known as deltoids, but the word deltoid may also refer to a deltoid curve, an unrelated geometric object sometimes studied in connection with quadrilaterals. A kite may also be called a dart, particularly if it is not convex.

<span class="mw-page-title-main">Parallelogram</span> Quadrilateral with two pairs of parallel sides

In Euclidean geometry, a parallelogram is a simple (non-self-intersecting) quadrilateral with two pairs of parallel sides. The opposite or facing sides of a parallelogram are of equal length and the opposite angles of a parallelogram are of equal measure. The congruence of opposite sides and opposite angles is a direct consequence of the Euclidean parallel postulate and neither condition can be proven without appealing to the Euclidean parallel postulate or one of its equivalent formulations.

<span class="mw-page-title-main">Bisection</span> Division of something into two equal or congruent parts

In geometry, bisection is the division of something into two equal or congruent parts. Usually it involves a bisecting line, also called a bisector. The most often considered types of bisectors are the segment bisector, a line that passes through the midpoint of a given segment, and the angle bisector, a line that passes through the apex of an angle . In three-dimensional space, bisection is usually done by a bisecting plane, also called the bisector.

<span class="mw-page-title-main">Rhombus</span> Quadrilateral with sides of equal length

In plane Euclidean geometry, a rhombus is a quadrilateral whose four sides all have the same length. Another name is equilateral quadrilateral, since equilateral means that all of its sides are equal in length. The rhombus is often called a "diamond", after the diamonds suit in playing cards which resembles the projection of an octahedral diamond, or a lozenge, though the former sometimes refers specifically to a rhombus with a 60° angle, and the latter sometimes refers specifically to a rhombus with a 45° angle.

<span class="mw-page-title-main">Cyclic quadrilateral</span> Quadrilateral whose vertices can all fall on a single circle

In Euclidean geometry, a cyclic quadrilateral or inscribed quadrilateral is a quadrilateral whose vertices all lie on a single circle. This circle is called the circumcircle or circumscribed circle, and the vertices are said to be concyclic. The center of the circle and its radius are called the circumcenter and the circumradius respectively. Other names for these quadrilaterals are concyclic quadrilateral and chordal quadrilateral, the latter since the sides of the quadrilateral are chords of the circumcircle. Usually the quadrilateral is assumed to be convex, but there are also crossed cyclic quadrilaterals. The formulas and properties given below are valid in the convex case.

<span class="mw-page-title-main">Trapezoid</span> Convex quadrilateral with at least one pair of parallel sides

In geometry, a trapezoid in North American English, or trapezium in British English, is a quadrilateral that has one pair of parallel sides.

<span class="mw-page-title-main">Midpoint</span> Point on a line segment which is equidistant from both endpoints

In geometry, the midpoint is the middle point of a line segment. It is equidistant from both endpoints, and it is the centroid both of the segment and of the endpoints. It bisects the segment.

<span class="mw-page-title-main">Concyclic points</span> Points on a common circle

In geometry, a set of points are said to be concyclic if they lie on a common circle. A polygon whose vertices are concyclic is called a cyclic polygon, and the circle is called its circumscribing circle or circumcircle. All concyclic points are equidistant from the center of the circle.

<span class="mw-page-title-main">Square</span> Regular quadrilateral

In Euclidean geometry, a square is a regular quadrilateral, which means that it has four straight sides of equal length and four equal angles. It can also be defined as a rectangle with two equal-length adjacent sides. It is the only regular polygon whose internal angle, central angle, and external angle are all equal (90°). A square with vertices ABCD would be denoted ABCD.

<span class="mw-page-title-main">Concurrent lines</span> Lines which intersect at a single point

In geometry, lines in a plane or higher-dimensional space are concurrent if they intersect at a single point.

<span class="mw-page-title-main">Simson line</span> Line constructed from a triangle

In geometry, given a triangle ABC and a point P on its circumcircle, the three closest points to P on lines AB, AC, and BC are collinear. The line through these points is the Simson line of P, named for Robert Simson. The concept was first published, however, by William Wallace in 1799, and is sometimes called the Wallace line.

<span class="mw-page-title-main">Antiparallelogram</span> Polygon with four crossed edges of two lengths

In geometry, an antiparallelogram is a type of self-crossing quadrilateral. Like a parallelogram, an antiparallelogram has two opposite pairs of equal-length sides, but these pairs of sides are not in general parallel. Instead, each pair of sides is antiparallel with respect to the other, with sides in the longer pair crossing each other as in a scissors mechanism. Whereas a parallelogram's opposite angles are equal and oriented the same way, an antiparallelogram's are equal but oppositely oriented. Antiparallelograms are also called contraparallelograms or crossed parallelograms.

<span class="mw-page-title-main">Tangential quadrilateral</span> Polygon whose four sides all touch a circle

In Euclidean geometry, a tangential quadrilateral or circumscribed quadrilateral is a convex quadrilateral whose sides all can be tangent to a single circle within the quadrilateral. This circle is called the incircle of the quadrilateral or its inscribed circle, its center is the incenter and its radius is called the inradius. Since these quadrilaterals can be drawn surrounding or circumscribing their incircles, they have also been called circumscribable quadrilaterals, circumscribing quadrilaterals, and circumscriptible quadrilaterals. Tangential quadrilaterals are a special case of tangential polygons.

<span class="mw-page-title-main">Varignon's theorem</span> The midpoints of the sides of an arbitrary quadrilateral form a parallelogram

In Euclidean geometry, Varignon's theorem holds that the midpoints of the sides of an arbitrary quadrilateral form a parallelogram, called the Varignon parallelogram. It is named after Pierre Varignon, whose proof was published posthumously in 1731.

<span class="mw-page-title-main">Orthodiagonal quadrilateral</span> Special quadrilateral whose diagonals intersect at right angles

In Euclidean geometry, an orthodiagonal quadrilateral is a quadrilateral in which the diagonals cross at right angles. In other words, it is a four-sided figure in which the line segments between non-adjacent vertices are orthogonal (perpendicular) to each other.

<span class="mw-page-title-main">Equidiagonal quadrilateral</span>

In Euclidean geometry, an equidiagonal quadrilateral is a convex quadrilateral whose two diagonals have equal length. Equidiagonal quadrilaterals were important in ancient Indian mathematics, where quadrilaterals were classified first according to whether they were equidiagonal and then into more specialized types.

References

  1. 1 2 Josefsson, Martin (2020), "104.20 A characterisation of midsquare quadrilaterals", The Mathematical Gazette , 104 (560): 331–335, doi:10.1017/mag.2020.62, MR   4120226
  2. 1 2 3 Alsina, Claudi; Nelsen, Roger B. (2020), A Cornucopia of Quadrilaterals, Dolciani Mathematical Expositions, vol. 55, American Mathematical Society, pp. 22–23, ISBN   9781470453121
  3. Neuberg, J. (1894), "Sur quelques quadrilatères spéciaux", Mathesis (in French), 4: 268–271
  4. 1 2 3 4 Echols, W. H. (1923), "Some properties of a skewsquare", The American Mathematical Monthly , 30 (3): 120–127, doi:10.1080/00029890.1923.11986215, JSTOR   2298556, MR   1520186
  5. Van Aubel, H. (1878), "Note concernant les centres de carrés construits sur les côtés d'un polygon quelconque", Nouvelle Correspondance Mathématique (in French), 4: 40–44
  6. Schäffer, J. J. (1958), "Nachtrag zu Ungelöste Prob. 12", Elemente der Mathematik , 13: 85–86; as cited by Graham, R. L. (1975), "The largest small hexagon" (PDF), Journal of Combinatorial Theory, Series A , 18 (2): 165–170, doi:10.1016/0097-3165(75)90004-7