Minnesota functionals

Last updated

Minnesota Functionals (Myz) are a group of highly parameterized approximate exchange-correlation energy functionals in density functional theory (DFT). They are developed by the group of Donald Truhlar at the University of Minnesota. The Minnesota functionals are available in a large number of popular quantum chemistry computer programs, and can be used for traditional quantum chemistry and solid-state physics calculations.

Contents

These functionals are based on the meta-GGA approximation, i.e. they include terms that depend on the kinetic energy density, and are all based on complicated functional forms parametrized on high-quality benchmark databases. The Myz functionals are widely used and tested in the quantum chemistry community. [1] [2] [3] [4]

Controversies

Independent evaluations of the strengths and limitations of the Minnesota functionals with respect to various chemical properties cast doubts on their accuracy. [5] [6] [7] [8] [9] Some regard this criticism to be unfair. In this view, because Minnesota functionals are aiming for a balanced description for both main-group and transition-metal chemistry, the studies assessing Minnesota functionals solely based on the performance on main-group databases [5] [6] [7] [8] yield biased information, as the functionals that work well for main-group chemistry may fail for transition metal chemistry.

A study in 2017 highlighted what appeared to be the poor performance of Minnesota functionals on atomic densities. [10] Others subsequently refuted this criticism, claiming that focusing only on atomic densities (including chemically unimportant, highly charged cations) is hardly relevant to real applications of density functional theory in computational chemistry. Another study found this to be the case: for Minnesota functionals, the errors in atomic densities and in energetics are indeed decoupled, and the Minnesota functionals perform better for diatomic densities than for the atomic densities. [11] The study concludes that atomic densities do not yield an accurate judgement of the performance of density functionals. [11] Minnesota functionals have also been shown to reproduce chemically relevant Fukui functions better than they do the atomic densities. [12]

Family of functionals

Minnesota 05

The first family of Minnesota functionals, published in 2005, is composed by:

In addition to the fraction of HF exchange, the M05 family of functionals includes 22 additional empirical parameters. [14] A range-separated functional based on the M05 form, ωM05-D which includes empirical atomic dispersion corrections, has been reported by Chai and coworkers. [15]

Minnesota 06

The '06 family represent a general improvement[ citation needed ] over the 05 family and is composed of:

The M06 and M06-2X functionals introduce 35 and 32 empirically optimized parameters, respectively, into the exchange-correlation functional. [18] A range-separated functional based on the M06 form, ωM06-D3 which includes empirical atomic dispersion corrections, has been reported by Chai and coworkers. [22]

Minnesota 08

The '08 family was created with the primary intent to improve the M06-2X functional form, retaining the performances for main group thermochemistry, kinetics and non-covalent interactions. This family is composed by two functionals with a high percentage of HF exchange, with performances similar to those of M06-2X[ citation needed ]:

Minnesota 11

The '11 family introduces range-separation in the Minnesota functionals and modifications in the functional form and in the training databases. These modifications also cut the number of functionals in a complete family from 4 (M06-L, M06, M06-2X and M06-HF) to just 2:

Minnesota 12

The 12 family uses a nonseparable [27] (N in MN) functional form aiming to provide balanced performance for both chemistry and solid-state physics applications. It is composed by:

Minnesota 15

The 15 functionals are the newest addition to the Minnesota family. Like the 12 family, the functionals are based on a non-separable form, but unlike the 11 or 12 families the hybrid functional doesn't use range separation: MN15 is a global hybrid like in the pre-11 families. The 15 family consists of two functionals

Main Software with Implementation of the Minnesota Functionals

PackageM05M05-2XM06-LrevM06-LM06M06-2XM06-HFM08-HXM08-SOM11-LM11MN12-LMN12-SXMN15MN15-L
ADF Yes*Yes*YesNoYesYesYesYes*Yes*Yes*Yes*Yes*Yes*Yes*Yes*
CPMD YesYesYesNoYesYesYesYesYesYesYesNoNoNoNo
GAMESS (US) YesYesYesNoYesYesYesYesYesYesYesYesYesYesYes
Gaussian 16 YesYesYesNoYesYesYesYesYesYesYesYesYesYesYes
Jaguar YesYesYesNoYesYesYesYesYesYesYesYesNoYesYes
Libxc YesYesYesYesYesYesYesYesYesYesYesYesYesYesYes
MOLCAS YesYesYesNoYesYesYesYesYesNoNoNoNoNoNo
MOLPRO YesYesYesNoYesYesYesYesYesYesNoNoNoNoNo
NWChem YesYesYesNoYesYesYesYesYesYesYesNoNoNoNo
Orca Yes*Yes*YesYes*YesYesYes*Yes*Yes*Yes*Yes*Yes*Yes*Yes*Yes*
PSI4 Yes*Yes*Yes*NoYes*Yes*Yes*Yes*Yes*Yes*Yes*Yes*Yes*Yes*Yes*
Q-Chem YesYesYesYesYesYesYesYesYesYesYesYesYesNoYes
Quantum ESPRESSO NoNoYesNoNoNoNoNoNoNoNoNoNoNoNo
TURBOMOLE Yes*Yes*YesYes*YesYesYesYes*Yes*Yes*Yes*Yes*Yes*Yes*Yes*
VASP NoNoYesNoNoNoNoNoNoNoNoNoNoNoNo

* Using LibXC.

Related Research Articles

Quantum chemistry, also called molecular quantum mechanics, is a branch of physical chemistry focused on the application of quantum mechanics to chemical systems, particularly towards the quantum-mechanical calculation of electronic contributions to physical and chemical properties of molecules, materials, and solutions at the atomic level. These calculations include systematically applied approximations intended to make calculations computationally feasible while still capturing as much information about important contributions to the computed wave functions as well as to observable properties such as structures, spectra, and thermodynamic properties. Quantum chemistry is also concerned with the computation of quantum effects on molecular dynamics and chemical kinetics.

Density functional theory (DFT) is a computational quantum mechanical modelling method used in physics, chemistry and materials science to investigate the electronic structure of many-body systems, in particular atoms, molecules, and the condensed phases. Using this theory, the properties of a many-electron system can be determined by using functionals, i.e. functions of another function. In the case of DFT, these are functionals of the spatially dependent electron density. DFT is among the most popular and versatile methods available in condensed-matter physics, computational physics, and computational chemistry.

In atomic physics, a partial charge is a non-integer charge value when measured in elementary charge units. It is represented by the Greek lowercase delta (𝛿), namely 𝛿− or 𝛿+.

Gaussian is a general purpose computational chemistry software package initially released in 1970 by John Pople and his research group at Carnegie Mellon University as Gaussian 70. It has been continuously updated since then. The name originates from Pople's use of Gaussian orbitals to speed up molecular electronic structure calculations as opposed to using Slater-type orbitals, a choice made to improve performance on the limited computing capacities of then-current computer hardware for Hartree–Fock calculations. The current version of the program is Gaussian 16. Originally available through the Quantum Chemistry Program Exchange, it was later licensed out of Carnegie Mellon University, and since 1987 has been developed and licensed by Gaussian, Inc.

The atomic radius of a chemical element is the distance from the center of the nucleus to the outermost shell of an electron. Since the boundary is not a well-defined physical entity, there are various non-equivalent definitions of atomic radius. Depending on the definition, the term may apply only to isolated atoms, or also to atoms in condensed matter, covalently bound in molecules, or in ionized and excited states; and its value may be obtained through experimental measurements, or computed from theoretical models. Under some definitions, the value of the radius may depend on the atom's state and context.

<span class="mw-page-title-main">Molecular imprinting</span> Technique in polymer chemistry

Molecular imprinting is a technique to create template-shaped cavities in polymer matrices with predetermined selectivity and high affinity. This technique is based on the system used by enzymes for substrate recognition, which is called the "lock and key" model. The active binding site of an enzyme has a shape specific to a substrate. Substrates with a complementary shape to the binding site selectively bind to the enzyme; alternative shapes that do not fit the binding site are not recognized.

Koopmans' theorem states that in closed-shell Hartree–Fock theory (HF), the first ionization energy of a molecular system is equal to the negative of the orbital energy of the highest occupied molecular orbital (HOMO). This theorem is named after Tjalling Koopmans, who published this result in 1934.

Quantum Monte Carlo encompasses a large family of computational methods whose common aim is the study of complex quantum systems. One of the major goals of these approaches is to provide a reliable solution of the quantum many-body problem. The diverse flavors of quantum Monte Carlo approaches all share the common use of the Monte Carlo method to handle the multi-dimensional integrals that arise in the different formulations of the many-body problem.

<span class="mw-page-title-main">Force field (chemistry)</span> Concept on molecular modeling

In the context of chemistry, molecular physics, physical chemistry, and molecular modelling, a force field is a computational model that is used to describe the forces between atoms within molecules or between molecules as well as in crystals. Force fields are a variety of interatomic potentials. More precisely, the force field refers to the functional form and parameter sets used to calculate the potential energy of a system on the atomistic level. Force fields are usually used in molecular dynamics or Monte Carlo simulations. The parameters for a chosen energy function may be derived from classical laboratory experiment data, calculations in quantum mechanics, or both. Force fields utilize the same concept as force fields in classical physics, with the main difference being that the force field parameters in chemistry describe the energy landscape on the atomistic level. From a force field, the acting forces on every particle are derived as a gradient of the potential energy with respect to the particle coordinates.

<span class="mw-page-title-main">Spartan (chemistry software)</span>

Spartan is a molecular modelling and computational chemistry application from Wavefunction. It contains code for molecular mechanics, semi-empirical methods, ab initio models, density functional models, post-Hartree–Fock models, and thermochemical recipes including G3(MP2) and T1. Quantum chemistry calculations in Spartan are powered by Q-Chem.

Ab initio quantum chemistry methods are computational chemistry methods based on quantum chemistry. The term ab initio was first used in quantum chemistry by Robert Parr and coworkers, including David Craig in a semiempirical study on the excited states of benzene. The background is described by Parr. Ab initio means "from first principles" or "from the beginning", implying that the only inputs into an ab initio calculation are physical constants. Ab initio quantum chemistry methods attempt to solve the electronic Schrödinger equation given the positions of the nuclei and the number of electrons in order to yield useful information such as electron densities, energies and other properties of the system. The ability to run these calculations has enabled theoretical chemists to solve a range of problems and their importance is highlighted by the awarding of the Nobel prize to John Pople and Walter Kohn.

Hybrid functionals are a class of approximations to the exchange–correlation energy functional in density functional theory (DFT) that incorporate a portion of exact exchange from Hartree–Fock theory with the rest of the exchange–correlation energy from other sources. The exact exchange energy functional is expressed in terms of the Kohn–Sham orbitals rather than the density, so is termed an implicit density functional. One of the most commonly used versions is B3LYP, which stands for "Becke, 3-parameter, Lee–Yang–Parr".

Quantum chemistry composite methods are computational chemistry methods that aim for high accuracy by combining the results of several calculations. They combine methods with a high level of theory and a small basis set with methods that employ lower levels of theory with larger basis sets. They are commonly used to calculate thermodynamic quantities such as enthalpies of formation, atomization energies, ionization energies and electron affinities. They aim for chemical accuracy which is usually defined as within 1 kcal/mol of the experimental value. The first systematic model chemistry of this type with broad applicability was called Gaussian-1 (G1) introduced by John Pople. This was quickly replaced by the Gaussian-2 (G2) which has been used extensively. The Gaussian-3 (G3) was introduced later.

<span class="mw-page-title-main">Donald Truhlar</span> American chemist

Donald Gene Truhlar is an American scientist working in theoretical and computational chemistry and chemical physics with special emphases on quantum mechanics and chemical dynamics.

In computational chemistry, a solvent model is a computational method that accounts for the behavior of solvated condensed phases. Solvent models enable simulations and thermodynamic calculations applicable to reactions and processes which take place in solution. These include biological, chemical and environmental processes. Such calculations can lead to new predictions about the physical processes occurring by improved understanding.

<span class="mw-page-title-main">Non-covalent interactions index</span>

The Non-Covalent Interactions index, commonly referred to as simply Non-Covalent Interactions (NCI) is a visualization index based in the Electron density (ρ) and the reduced density gradient (s). It is based on the empirical observation that Non-covalent interactions can be associated with the regions of small reduced density gradient at low electronic densities. In quantum chemistry, the non-covalent interactions index is used to visualize non-covalent interactions in three-dimensional space.

Erin Johnson is a Canadian computational chemist. She holds the Herzberg–Becke Chair at Dalhousie University. She works on density functional theory and intermolecular interactions.

<span class="mw-page-title-main">Clémence Corminboeuf</span> Swiss chemist

Clémence Corminboeuf is a Swiss chemist who is Professor of Computational chemistry at the École Polytechnique Fédérale de Lausanne. She was awarded the Swiss Chemical Society 2021 Heilbronner-Hückel Award.

In computational chemistry, natural resonance theory (NRT) is an iterative, variational functional embedded into the natural bond orbital (NBO) program, commonly run in Gaussian, GAMESS, ORCA, Ampac and other software packages. NRT was developed in 1997 by Frank A. Weinhold and Eric D. Glendening, chemistry professors at University of Wisconsin-Madison and Indiana State University, respectively. Given a list of NBOs for an idealized natural Lewis structure, the NRT functional creates a list of Lewis resonance structures and calculates the resonance weights of each contributing resonance structure. Structural and chemical properties, such as bond order, valency, and bond polarity, may be calculated from resonance weights. Specifically, bond orders may be divided into their covalent and ionic contributions, while valency is the sum of bond orders of a given atom. This aims to provide quantitative results that agree with qualitative notions of chemical resonance. In contrast to the "wavefunction resonance theory" (i.e., the superposition of wavefunctions), NRT uses the density matrix resonance theory, performing a superposition of density matrices to realize resonance. NRT has applications in ab initio calculations, including calculating the bond orders of intra- and intermolecular interactions and the resonance weights of radical isomers.

<span class="mw-page-title-main">Bismuthinidene</span> Class of organobismuth compounds

Bismuthinidenes are a class of organobismuth compounds, analogous to carbenes. These compounds have the general form R-Bi, with two lone pairs of electrons on the central bismuth(I) atom. Due to the unusually low valency and oxidation state of +1, most bismuthinidenes are reactive and unstable, though in recent decades, both transition metals and polydentate chelating Lewis base ligands have been employed to stabilize the low-valent bismuth(I) center through steric protection and π donation either in solution or in crystal structures. Lewis base-stabilized bismuthinidenes adopt a singlet ground state with an inert lone pair of electrons in the 6s orbital. A second lone pair in a 6p orbital and a single empty 6p orbital make Lewis base-stabilized bismuthinidenes ambiphilic.

References

  1. A.J. Cohen, P. Mori-Sánchez and W. Yang (2012). "Challenges for Density Functional Theory". Chemical Reviews. 112 (1): 289–320. doi:10.1021/cr200107z. PMID   22191548.
  2. E.G. Hohenstein, S.T. Chill & C.D. Sherrill (2008). "Assessment of the Performance of the M05−2X and M06−2X Exchange-Correlation Functionals for Noncovalent Interactions in Biomolecules". Journal of Chemical Theory and Computation. 4 (12): 1996–2000. doi:10.1021/ct800308k. PMID   26620472.
  3. K.E. Riley; M Pitoňák; P. Jurečka; P. Hobza (2010). "Stabilization and Structure Calculations for Noncovalent Interactions in Extended Molecular Systems Based on Wave Function and Density Functional Theories". Chemical Reviews. 110 (9): 5023–63. doi:10.1021/cr1000173. PMID   20486691.
  4. L. Ferrighi; Y. Pan; H. Grönbeck; B. Hammer (2012). "Study of Alkylthiolate Self-assembled Monolayers on Au(111) Using a Semilocal meta-GGA Density Functional". Journal of Physical Chemistry. 116 (13): 7374–7379. doi:10.1021/jp210869r.
  5. 1 2 N. Mardirossian; M. Head-Gordon (2013). "Characterizing and Understanding the Remarkably Slow Basis Set Convergence of Several Minnesota Density Functionals for Intermolecular Interaction Energies". Journal of Chemical Theory and Computation. 9 (10): 4453–4461. doi:10.1021/ct400660j. OSTI   1407198. PMID   26589163. S2CID   206908565.
  6. 1 2 L. Goerigk (2015). "Treating London-Dispersion Effects with the Latest Minnesota Density Functionals: Problems and Possible Solutions". Journal of Physical Chemistry Letters. 6 (19): 3891–3896. doi:10.1021/acs.jpclett.5b01591. hdl: 11343/209007 . PMID   26722889.
  7. 1 2 N. Mardirossian; M. Head-Gordon (2016). "How accurate are the Minnesota density functionals for non-covalent interactions, isomerization energies, thermochemistry, and barrier heights involving molecules composed of main-group elements?". Journal of Chemical Theory and Computation. 12 (9): 4303–4325. doi:10.1021/acs.jctc.6b00637. OSTI   1377487. PMID   27537680. S2CID   5479661.
  8. 1 2 Taylor, DeCarlos E.; Ángyán, János G.; Galli, Giulia; Zhang, Cui; Gygi, Francois; Hirao, Kimihiko; Song, Jong Won; Rahul, Kar; Anatole von Lilienfeld, O. (2016-09-23). "Blind test of density-functional-based methods on intermolecular interaction energies". The Journal of Chemical Physics. 145 (12): 124105. Bibcode:2016JChPh.145l4105T. doi:10.1063/1.4961095. hdl: 1911/94780 . ISSN   0021-9606. PMID   27782652.
  9. Kepp, Kasper P. (2017-03-09). "Benchmarking Density Functionals for Chemical Bonds of Gold" (PDF). The Journal of Physical Chemistry A. 121 (9): 2022–2034. Bibcode:2017JPCA..121.2022K. doi:10.1021/acs.jpca.6b12086. ISSN   1089-5639. PMID   28211697. S2CID   206643889.
  10. Medvedev, Michael G.; Bushmarinov, Ivan S.; Sun, Jianwei; Perdew, John P.; Lyssenko, Konstantin A. (2017-01-06). "Density functional theory is straying from the path toward the exact functional". Science. 355 (6320): 49–52. Bibcode:2017Sci...355...49M. doi:10.1126/science.aah5975. ISSN   0036-8075. PMID   28059761. S2CID   206652408.
  11. 1 2 Brorsen, Kurt R.; Yang, Yang; Pak, Michael V.; Hammes-Schiffer, Sharon (2017). "Is the Accuracy of Density Functional Theory for Atomization Energies and Densities in Bonding Regions Correlated?". J. Phys. Chem. Lett. 8 (9): 2076–2081. doi:10.1021/acs.jpclett.7b00774. PMID   28421759.
  12. Gould, Tim (2017). "What Makes a Density Functional Approximation Good? Insights from the Left Fukui Function". J. Chem. Theory Comput. 13 (6): 2373–2377. doi:10.1021/acs.jctc.7b00231. hdl: 10072/348655 . PMID   28493684.
  13. Y. Zhao, N.E. Schultz & D.G. Truhlar (2005). "Exchange-correlation functional with broad accuracy for metallic and nonmetallic compounds, kinetics, and noncovalent interactions". Journal of Chemical Physics. 123 (16): 161103. Bibcode:2005JChPh.123p1103Z. doi:10.1063/1.2126975. PMID   16268672.
  14. 1 2 Y. Zhao, N.E. Schultz & D.G. Truhlar (2006). "Design of Density Functionals by Combining the Method of Constraint Satisfaction with Parametrization for Thermochemistry, Thermochemical Kinetics, and Noncovalent Interactions". Journal of Chemical Theory and Computation. 2 (2): 364–382. doi:10.1021/ct0502763. PMID   26626525. S2CID   18998235.
  15. Lin, You-Sheng; Tsai, Chen-Wei; Li, Guan-De & Chai, Jeng-Da (2012). "Long-range corrected hybrid meta-generalized-gradient approximations with dispersion corrections". Journal of Chemical Physics. 136 (15): 154109. arXiv: 1201.1715 . Bibcode:2012JChPh.136o4109L. doi:10.1063/1.4704370. PMID   22519317. S2CID   16662593.
  16. Y. Zhao & D.G. Truhlar (2006). "A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions". Journal of Chemical Physics. 125 (19): 194101. Bibcode:2006JChPh.125s4101Z. CiteSeerX   10.1.1.186.6548 . doi:10.1063/1.2370993. PMID   17129083.
  17. Ying Wang; Xinsheng Jin; Haoyu S. Yu; Donald G. Truhlar & Xiao Hea (2017). "Revised M06-L functional for improved accuracy on chemical reaction barrier heights, noncovalent interactions, and solid-state physics". Proc. Natl. Acad. Sci. U.S.A. 114 (32): 8487–8492. Bibcode:2017PNAS..114.8487W. doi: 10.1073/pnas.1705670114 . PMC   5559035 . PMID   28739954.
  18. 1 2 3 Y. Zhao & D.G. Truhlar (2008). "The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals". Theor Chem Acc. 120 (1–3): 215–241. doi: 10.1007/s00214-007-0310-x .
  19. Y. Wang; P. Verma; X. Jin; D. G. Truhlar & X. He (2018). "Revised M06 density functional for main-group and transition-metal chemistry". Proc. Natl. Acad. Sci. U.S.A. 115 (41): 10257–10262. Bibcode:2018PNAS..11510257W. doi: 10.1073/pnas.1810421115 . PMC   6187147 . PMID   30237285.
  20. 1 2 Mardirossian, Narbe; Head-Gordon, Martin (2017-10-02). "Thirty years of density functional theory in computational chemistry: an overview and extensive assessment of 200 density functionals". Molecular Physics. 115 (19): 2315–2372. Bibcode:2017MolPh.115.2315M. doi: 10.1080/00268976.2017.1333644 . ISSN   0026-8976.
  21. Y. Zhao & D.G. Truhlar (2006). "Density Functional for Spectroscopy: No Long-Range Self-Interaction Error, Good Performance for Rydberg and Charge-Transfer States, and Better Performance on Average than B3LYP for Ground States". Journal of Physical Chemistry A. 110 (49): 13126–13130. Bibcode:2006JPCA..11013126Z. doi:10.1021/jp066479k. PMID   17149824.
  22. Lin, You-Sheng; Li, Guan-De; Mao, Shan-Ping & Chai, Jeng-Da (2013). "Long-Range Corrected Hybrid Density Functionals with Improved Dispersion Corrections". J. Chem. Theory Comput. 9 (1): 263–272. arXiv: 1211.0387 . doi:10.1021/ct300715s. PMID   26589028. S2CID   13494471.
  23. 1 2 Y. Zhao & D.G. Truhlar (2008). "Exploring the Limit of Accuracy of the Global Hybrid Meta Density Functional for Main-Group Thermochemistry, Kinetics, and Noncovalent Interactions". Journal of Chemical Theory and Computation. 4 (11): 1849–1868. doi:10.1021/ct800246v. PMID   26620329.
  24. R. Peverati & D.G. Truhlar (2012). "M11-L: A Local Density Functional That Provides Improved Accuracy for Electronic Structure Calculations in Chemistry and Physics". Journal of Physical Chemistry Letters. 3 (1): 117–124. doi: 10.1021/jz201525m .
  25. R. Peverati & D.G. Truhlar (2011). "Improving the Accuracy of Hybrid Meta-GGA Density Functionals by Range Separation". Journal of Physical Chemistry Letters. 2 (21): 2810–2817. doi: 10.1021/jz201170d .
  26. P. Verma; Y. Wang; S. Ghosh; X. He & D. G. Truhlar (2019). "Revised M11 Exchange-Correlation Functional for Electronic Excitation Energies and Ground-State Properties". Journal of Physical Chemistry A. 123 (13): 2966–2990. Bibcode:2019JPCA..123.2966V. doi:10.1021/acs.jpca.8b11499. PMID   30707029. S2CID   73431138.
  27. R. Peverati & D.G. Truhlar (2012). "Exchange–Correlation Functional with Good Accuracy for Both Structural and Energetic Properties while Depending Only on the Density and Its Gradient". Journal of Chemical Theory and Computation. 8 (7): 2310–2319. doi: 10.1021/ct3002656 . PMID   26588964.
  28. R. Peverati & D.G. Truhlar (2012). "An improved and broadly accurate local approximation to the exchange–correlation density functional: The MN12-L functional for electronic structure calculations in chemistry and physics". Physical Chemistry Chemical Physics. 14 (38): 13171–13174. Bibcode:2012PCCP...1413171P. doi:10.1039/c2cp42025b. PMID   22910998.
  29. R. Peverati & D.G. Truhlar (2012). "Screened-exchange density functionals with broad accuracy for chemistry and solid-state physics". Physical Chemistry Chemical Physics. 14 (47): 16187–91. Bibcode:2012PCCP...1416187P. doi:10.1039/c2cp42576a. PMID   23132141.
  30. Yu, Haoyu S.; He, Xiao; Li, Shaohong L. & Truhlar, Donald G. (2016). "MN15: A Kohn–Sham global-hybrid exchange–correlation density functional with broad accuracy for multi-reference and single-reference systems and noncovalent interactions". Chem. Sci. 7 (8): 5032–5051. doi:10.1039/C6SC00705H. PMC   6018516 . PMID   30155154.
  31. Yu, Haoyu S.; He, Xiao & Truhlar, Donald G. (2016). "MN15-L: A New Local Exchange-Correlation Functional for Kohn–Sham Density Functional Theory with Broad Accuracy for Atoms, Molecules, and Solids". J. Chem. Theory Comput. 12 (3): 1280–1293. doi:10.1021/acs.jctc.5b01082. PMID   26722866.