Developer(s) | Iowa State University Quantum Chemistry Group |
---|---|
Initial release | 1 October 1977 |
Stable release | Apr 20, 2017 / April 20, 2017 |
Written in | FORTRAN 77, C |
Operating system | Windows; Unix, Unix-like: Linux, FreeBSD, Mac OS X |
Available in | English |
Type | Computational chemistry |
License | Proprietary freeware |
Website | www |
General Atomic and Molecular Electronic Structure System (GAMESS (US)) is computer software for computational chemistry. [1] [2] [3] [4] [5] The original code started on October 1, 1977 as a National Resources for Computations in Chemistry project. [6] In 1981, the code base split into GAMESS (US) and GAMESS (UK) variants, which now differ significantly. GAMESS (US) is maintained by the members of the Gordon Research Group at Iowa State University. [7] GAMESS (US) source code is available as source-available freeware, but is not open-source software, due to license restrictions.
SCFTYP= | RHF | ROHF | UHF | GVB | MCSCF |
---|---|---|---|---|---|
Energy | CDpF | CDpF | CDpF | CDp | CDpF |
Analytic gradient | CDpF | CDpF | CDpF | CDp | CDpF |
Numerical Hessian | CDpF | CDp | CDp | CDp | CDp |
Analytic Hessian | CDpF | CDpF | CDpF | CDp | Dp |
MP2 energy | CDpF | CDpF | CDp | No | CDp |
MP2 gradient | CDpF | Dp | CDp | No | No |
CI energy | CDpF | CDp | No | CDp | CDp |
CI gradient | CD | No | No | No | No |
CC energy | CDpF | CDF | No | No | No |
EOM energy | CD | CD | No | No | No |
DFT energy | CDpF | CDp | CDpF | No | No |
DFT gradient | CDpF | CDp | CDpF | No | No |
TD-DFT energy | CDpF | No | CDpF | No | No |
TDDFT gradient | CDpF | No | No | No | No |
MOPAC energy | Yes | Yes | Yes | Yes | No |
MOPAC gradient | Yes | Yes | Yes | No | No |
MRSF-TDDFT Energy | No | Yes | No | No | No |
MRSF-TDDFT gradient | No | Yes | No | No | No |
GAMESS (US) can perform several general computational chemistry calculations, including Hartree–Fock method, density functional theory (DFT), generalized valence bond (GVB), and multi-configurational self-consistent field (MCSCF). Correlation corrections after these SCF calculations can be estimated by configuration interaction (CI), second order Møller–Plesset perturbation theory (MP2), and coupled cluster (CC) theory. Solvent effect can be considered using quantum mechanics and molecular mechanics through discrete effective fragment potentials or continuum models (such as PCM). Relativistic corrections can be calculated, including third order Douglas-Kroll scalar terms.
The GAMESS (US) program possesses Resolution-of-the-Identity (RI) approximated methods, which decrease the overall cost of a method by projecting the ERI tensor into three center matrices. The RI approximation has been applied to the MP2 and CCSD(T) methods, respectively. The RI-MP2 and the RI-CC code benefit from a MPI/OpenMP parallelization model allowing for great scaling and fast calculations.
GAMESS (US) also has a series of fragmentation methods that allow the user to target larger molecular systems by partitioning a large molecule into smaller, more feasible fragments. Examples are the fragment molecular orbital (FMO) method, the Effective Fragment Potential (EFP) method, and the Effective Fragment Molecular Orbital method (EFMO).
The GAMESS (US) software also provides a comprehensive bonding analysis technique based on the Quasi-Atomic Orbital (QUAO) analysis proposed by professor Klaus Ruedenberg. The QUAO analysis provides a quasi-atomical perspective of bonding molecular orbitals in molecules. These are oriented orbitals which show the bonding direction. QUAOs are characterized by their Bond Order (BO), Kinetic Bond Order (KBO) which is a measure of the strength of the bond, and their occupation number. The QUAO analysis allows users to study bonding patterns in molecules or small to medium size with a high degree of accuracy.
While the program does not directly perform molecular mechanics, it can do mixed quantum mechanics and molecular mechanics calculations through effective fragment potentials or through an interface with the Tinker code. The fragment molecular orbital method can be used to treat large systems, by dividing them into fragments.
It can also be interfaced with the valence bond VB2000 and XMVB programs and the Natural Bond Orbital (NBO) population analysis program.
The input files use a keyword based scheme. For example, $CONTRL SCFTYP=ROHF MAXIT=30 $END, which specifies that the SCF part of the code should do a restricted open-shell Hartree–Fock (ROHF) calculation and quit if the result does not converge in 30 iterations. The output is in an English language text file. [8]
Computational chemistry is a branch of chemistry that uses computer simulations to assist in solving chemical problems. It uses methods of theoretical chemistry incorporated into computer programs to calculate the structures and properties of molecules, groups of molecules, and solids. The importance of this subject stems from the fact that, with the exception of some relatively recent findings related to the hydrogen molecular ion, achieving an accurate quantum mechanical depiction of chemical systems analytically, or in a closed form, is not feasible. The complexity inherent in the many-body problem exacerbates the challenge of providing detailed descriptions of quantum mechanical systems. While computational results normally complement information obtained by chemical experiments, it can occasionally predict unobserved chemical phenomena.
Quantum chemistry, also called molecular quantum mechanics, is a branch of physical chemistry focused on the application of quantum mechanics to chemical systems, particularly towards the quantum-mechanical calculation of electronic contributions to physical and chemical properties of molecules, materials, and solutions at the atomic level. These calculations include systematically applied approximations intended to make calculations computationally feasible while still capturing as much information about important contributions to the computed wave functions as well as to observable properties such as structures, spectra, and thermodynamic properties. Quantum chemistry is also concerned with the computation of quantum effects on molecular dynamics and chemical kinetics.
A linear combination of atomic orbitals or LCAO is a quantum superposition of atomic orbitals and a technique for calculating molecular orbitals in quantum chemistry. In quantum mechanics, electron configurations of atoms are described as wavefunctions. In a mathematical sense, these wave functions are the basis set of functions, the basis functions, which describe the electrons of a given atom. In chemical reactions, orbital wavefunctions are modified, i.e. the electron cloud shape is changed, according to the type of atoms participating in the chemical bond.
In chemistry, molecular orbital theory is a method for describing the electronic structure of molecules using quantum mechanics. It was proposed early in the 20th century.
Q-Chem is a general-purpose electronic structure package featuring a variety of established and new methods implemented using innovative algorithms that enable fast calculations of large systems on various computer architectures, from laptops and regular lab workstations to midsize clusters, HPCC, and cloud computing using density functional and wave-function based approaches. It offers an integrated graphical interface and input generator; a large selection of functionals and correlation methods, including methods for electronically excited states and open-shell systems; solvation models; and wave-function analysis tools. In addition to serving the computational chemistry community, Q-Chem also provides a versatile code development platform.
NWChem is an ab initio computational chemistry software package which includes quantum chemical and molecular dynamics functionality. It was designed to run on high-performance parallel supercomputers as well as conventional workstation clusters. It aims to be scalable both in its ability to treat large problems efficiently, and in its usage of available parallel computing resources. NWChem has been developed by the Molecular Sciences Software group of the Theory, Modeling & Simulation program of the Environmental Molecular Sciences Laboratory (EMSL) at the Pacific Northwest National Laboratory (PNNL). The early implementation was funded by the EMSL Construction Project.
In theoretical and computational chemistry, a basis set is a set of functions that is used to represent the electronic wave function in the Hartree–Fock method or density-functional theory in order to turn the partial differential equations of the model into algebraic equations suitable for efficient implementation on a computer.
Austin Model 1, or AM1, is a semi-empirical method for the quantum calculation of molecular electronic structure in computational chemistry. It is based on the Neglect of Differential Diatomic Overlap integral approximation. Specifically, it is a generalization of the modified neglect of differential diatomic overlap approximation. Related methods are PM3 and the older MINDO.
Valence bond (VB) computer programs for modern valence bond calculations:-
PQS is a general purpose quantum chemistry program. Its roots go back to the first ab initio gradient program developed in Professor Peter Pulay's group but now it is developed and distributed commercially by Parallel Quantum Solutions. There is a reduction in cost for academic users and a site license. Its strong points are geometry optimization, NMR chemical shift calculations, and large MP2 calculations, and high parallel efficiency on computing clusters. It includes many other capabilities including Density functional theory, the semiempirical methods, MINDO/3, MNDO, AM1 and PM3, Molecular mechanics using the SYBYL 5.0 Force Field, the quantum mechanics/molecular mechanics mixed method using the ONIOM method, natural bond orbital (NBO) analysis and COSMO solvation models. Recently, a highly efficient parallel CCSD(T) code for closed shell systems has been developed. This code includes many other post Hartree–Fock methods: MP2, MP3, MP4, CISD, CEPA, QCISD and so on.
General Atomic and Molecular Electronic Structure System (GAMESS-UK) is a computer software program for computational chemistry. The original code split in 1981 into GAMESS-UK and GAMESS (US) variants, which now differ significantly. Many of the early developments in the UK version arose from the earlier UK based ATMOL program, which, unlike GAMESS, lacked analytical gradients for geometry optimisation.
Spartan is a molecular modelling and computational chemistry application from Wavefunction. It contains code for molecular mechanics, semi-empirical methods, ab initio models, density functional models, post-Hartree–Fock models, and thermochemical recipes including G3(MP2) and T1. Quantum chemistry calculations in Spartan are powered by Q-Chem.
Ab initio quantum chemistry methods are computational chemistry methods based on quantum chemistry. The term ab initio was first used in quantum chemistry by Robert Parr and coworkers, including David Craig in a semiempirical study on the excited states of benzene. The background is described by Parr. Ab initio means "from first principles" or "from the beginning", implying that the only inputs into an ab initio calculation are physical constants. Ab initio quantum chemistry methods attempt to solve the electronic Schrödinger equation given the positions of the nuclei and the number of electrons in order to yield useful information such as electron densities, energies and other properties of the system. The ability to run these calculations has enabled theoretical chemists to solve a range of problems and their importance is highlighted by the awarding of the Nobel prize to John Pople and Walter Kohn.
The fragment molecular orbital method (FMO) is a computational method that can be used to calculate very large molecular systems with thousands of atoms using ab initio quantum-chemical wave functions.
Quantum chemistry composite methods are computational chemistry methods that aim for high accuracy by combining the results of several calculations. They combine methods with a high level of theory and a small basis set with methods that employ lower levels of theory with larger basis sets. They are commonly used to calculate thermodynamic quantities such as enthalpies of formation, atomization energies, ionization energies and electron affinities. They aim for chemical accuracy which is usually defined as within 1 kcal/mol of the experimental value. The first systematic model chemistry of this type with broad applicability was called Gaussian-1 (G1) introduced by John Pople. This was quickly replaced by the Gaussian-2 (G2) which has been used extensively. The Gaussian-3 (G3) was introduced later.
Ascalaph Designer is a computer program for general purpose molecular modelling for molecular design and simulations. It provides a graphical environment for the common programs of quantum and classical molecular modelling ORCA, NWChem, Firefly, CP2K and MDynaMix . The molecular mechanics calculations cover model building, energy optimizations and molecular dynamics. Firefly covers a wide range of quantum chemistry methods. Ascalaph Designer is free and open-source software, released under the GNU General Public License, version 2 (GPLv2).
Kim K. Baldridge is an American theoretical and computational chemist who works to develop quantum mechanical methodologies and apply quantum chemical methods to problems in life sciences, materials science, and general studies. She is professor and vice dean in the School of Pharmaceutical Science and Technology of Tianjin University in China, where she also directs the High Performance Computing Center.
Theresa Lynn Windus is an American chemist who is a distinguished professor at Iowa State University and the Ames Laboratory. Her research involves the development and use of high performance computational chemistry methods to tackle environmental challenges, including the development of new catalysts and renewable energy sources. She was elected a Fellow of the American Chemical Society in 2020.