COLUMBUS

Last updated

The COLUMBUS PROGRAMS are a computational chemistry software suite for calculating ab initio molecular electronic structures, designed as a collection of individual programs communicating through files. [1] [2] The programs focus on extended multi-reference calculations of atomic and molecular ground and excited states. In addition to standard classes of reference wave functions such as CAS and RAS, calculations can be performed with selected configurations. Some features employ the atomic orbital integrals and gradient routines from the Dalton as well as MOLCAS program suites. COLUMBUS is distributed open-source under the LGPL license.

Contents

The COLUMBUS PROGRAMS are frequently used for nonadiabatic problems because of its ability to calculate MRCI nonadiabatic coupling vector analytically.

Brief History

The COLUMBUS PROGRAMS were started in 1980 in the Department of Chemistry of Ohio State University by Isaiah Shavitt, [3] Hans Lischka and Ron Shepard. The programs pioneered the Graphical Unitary Group Approach (GUGA) for configuration interaction calculations, which is now available in many other program suites. The programs are named after Columbus, OH.

Style

The COLUMBUS PROGRAMS maintain a program unique style that distinguish itself from most other quantum chemistry programs.

The program suite is a collection of a number of programs coded in Fortran, each can be executed independently. These programs communicate through files. Perl scripts are provided to prepare input files and to link these programs together to perform common tasks such as single point energy calculation, geometry optimization, normal mode analysis, etc. This style provides very high degree of flexibility which is embraced by advanced users. The open style allows new components to be added to the program suite with ease. However, such flexibility also increased the complexity of input file preparation and execution, making it very difficult for new users.

Major features

See also

Related Research Articles

Computational chemistry is a branch of chemistry that uses computer simulation to assist in solving chemical problems. It uses methods of theoretical chemistry, incorporated into computer programs, to calculate the structures and properties of molecules, groups of molecules, and solids. It is essential because, apart from relatively recent results concerning the hydrogen molecular ion, the quantum many-body problem cannot be solved analytically, much less in closed form. While computational results normally complement the information obtained by chemical experiments, it can in some cases predict hitherto unobserved chemical phenomena. It is widely used in the design of new drugs and materials.

<span class="mw-page-title-main">MOLPRO</span> Ab initio quantum chemistry software package

MOLPRO is a software package used for accurate ab initio quantum chemistry calculations. It is developed by Peter Knowles at Cardiff University and Hans-Joachim Werner at Universität Stuttgart in collaboration with other authors.

Vibronic coupling in a molecule involves the interaction between electronic and nuclear vibrational motion. The term "vibronic" originates from the combination of the terms "vibrational" and "electronic", denoting the idea that in a molecule, vibrational and electronic interactions are interrelated and influence each other. The magnitude of vibronic coupling reflects the degree of such interrelation.

Configuration interaction (CI) is a post-Hartree–Fock linear variational method for solving the nonrelativistic Schrödinger equation within the Born–Oppenheimer approximation for a quantum chemical multi-electron system. Mathematically, configuration simply describes the linear combination of Slater determinants used for the wave function. In terms of a specification of orbital occupation (for instance, (1s)2(2s)2(2p)1...), interaction means the mixing (interaction) of different electronic configurations (states). Due to the long CPU time and large memory required for CI calculations, the method is limited to relatively small systems.

Electronic correlation is the interaction between electrons in the electronic structure of a quantum system. The correlation energy is a measure of how much the movement of one electron is influenced by the presence of all other electrons.

In computational chemistry, post–Hartree–Fock (post-HF) methods are the set of methods developed to improve on the Hartree–Fock (HF), or self-consistent field (SCF) method. They add electron correlation which is a more accurate way of including the repulsions between electrons than in the Hartree–Fock method where repulsions are only averaged.

In quantum chemistry, the multireference configuration interaction (MRCI) method consists of a configuration interaction expansion of the eigenstates of the electronic molecular Hamiltonian in a set of Slater determinants which correspond to excitations of the ground state electronic configuration but also of some excited states. The Slater determinants from which the excitations are performed are called reference determinants. The higher excited determinants are then chosen either by the program according to some perturbation theoretical ansatz according to a threshold provided by the user or simply by truncating excitations from these references to singly, doubly, ... excitations resulting in MRCIS, MRCISD, etc.

Full configuration interaction is a linear variational approach which provides numerically exact solutions to the electronic time-independent, non-relativistic Schrödinger equation.

<span class="mw-page-title-main">PQS (software)</span> Quantum chemistry software program

PQS is a general purpose quantum chemistry program. Its roots go back to the first ab initio gradient program developed in Professor Peter Pulay's group but now it is developed and distributed commercially by Parallel Quantum Solutions. There is a reduction in cost for academic users and a site license. Its strong points are geometry optimization, NMR chemical shift calculations, and large MP2 calculations, and high parallel efficiency on computing clusters. It includes many other capabilities including Density functional theory, the semiempirical methods, MINDO/3, MNDO, AM1 and PM3, Molecular mechanics using the SYBYL 5.0 Force Field, the quantum mechanics/molecular mechanics mixed method using the ONIOM method, natural bond orbital (NBO) analysis and COSMO solvation models. Recently, a highly efficient parallel CCSD(T) code for closed shell systems has been developed. This code includes many other post Hartree–Fock methods: MP2, MP3, MP4, CISD, CEPA, QCISD and so on.

The Davidson correction is an energy correction often applied in calculations using the method of truncated configuration interaction, which is one of several post-Hartree–Fock ab initio quantum chemistry methods in the field of computational chemistry. It was introduced by Ernest R. Davidson.

<span class="mw-page-title-main">MOLCAS</span> Computational chemistry software

MOLCAS is an ab initio computational chemistry program, developed as a joint project by a number of international institutes. MOLCAS is developed by scientists to be used by scientists. It is not primarily a commercial product and it is not sold in order to produce a fortune for its owner.

Isaiah Shavitt was a Polish-born Israeli and American theoretical chemist.

<span class="mw-page-title-main">Spartan (chemistry software)</span>

Spartan is a molecular modelling and computational chemistry application from Wavefunction. It contains code for molecular mechanics, semi-empirical methods, ab initio models, density functional models, post-Hartree–Fock models, and thermochemical recipes including G3(MP2) and T1. Quantum chemistry calculations in Spartan are powered by Q-Chem.

The fragment molecular orbital method (FMO) is a computational method that can compute very large molecular systems with thousands of atoms using ab initio quantum-chemical wave functions.

Graphical unitary group approach (GUGA) is a technique used to construct Configuration state functions (CSFs) in computational quantum chemistry. As reflected in its name, the method uses the mathematical properties of the unitary group.

<span class="mw-page-title-main">Newton-X</span> Molecular dynamics simulation software

Newton-X is a general program for molecular dynamics simulations beyond the Born-Oppenheimer approximation. It has been primarily used for simulations of ultrafast processes in photoexcited molecules. It has also been used for simulation of band envelops of absorption and emission spectra.

SHARC is an ab initio molecular dynamics program suite primarily dedicated to study the excited-state dynamics of molecules. It is free for academic use, open source released under the GNU General Public License.

<span class="mw-page-title-main">Hans Lischka</span>

Hans Lischka is an Austrian computational theoretical chemist specialized on development and application of multireference methods for the study of molecular excited states. He is the main developer of the software package Columbus for ab initio multireference calculations and co-developer of the Newton-X program.

<span class="mw-page-title-main">Mixed quantum-classical dynamics</span> Computational chemistry methods to simulate non-adiabatic processes

Mixed quantum-classical (MQC) dynamics is a class of computational theoretical chemistry methods tailored to simulate non-adiabatic (NA) processes in molecular and supramolecular chemistry. Such methods are characterized by:

  1. Propagation of nuclear dynamics through classical trajectories;
  2. Propagation of the electrons through quantum methods;
  3. A feedback algorithm between the electronic and nuclear subsystems to recover nonadiabatic information.

References

  1. Lischka, Hans; Muller, Thomas; Szalay, Peter; Shavitt, Isaiah; Pitzer, Russell; Shepard, Ron. "Columbus - a program system for advanced multireference theory calculations". Wiley Interdisciplinary Reviews: Computational Molecular Science. 1: 191–199. doi:10.1002/wcms.25.
  2. Lischka, Hans; et al. "High-level multireference methods in the quantum-chemistry program system COLUMBUS: Analytic MR-CISD and MR-AQCC gradients and MR-AQCC-LRT for excited states, GUGA spin-orbit CI and parallel CI density". Physical Chemistry Chemical Physics. 3: 664–673. doi:10.1039/B008063M.
  3. "Profile of Isaiah Shavitt". IAQMS. Archived from the original on 2012-02-20. Retrieved 29 October 2012.