Aqion

Last updated
aqion
Initial releaseJanuary 1, 2012 (2012-01-01)
Stable release
version 8.4 / Dec 2023
Written in C++
Operating system Windows
Size 5 MB
Available inEnglish, German
Website aqion.de

Aqion is a hydrochemistry software tool. It bridges the gap between scientific software (such like PhreeqC [1] ) and the calculation/handling of "simple" water-related tasks in daily routine practice. The software aqion is free for private users, education and companies.

Contents

Motivation & history

First. Most of the hydrochemical software is designed for experts and scientists. In order to flatten the steep learning curve aqion provides an introduction to fundamental water-related topics in form of a "chemical pocket calculator".

Second. The program mediates between two terminological concepts: The calculations are performed in the "scientific realm" of thermodynamics (activities, speciation, log K values, ionic strength, etc.). Then, the output is translated into the "language" of common use: molar and mass concentrations, alkalinity, buffer capacities, water hardness, conductivity and others.

History. Version 1.0 was released in January 2012 (after a half-year test run in 2011). The project is active with 1-2 updates per month.

Features

Fields of application

Limits of application

Basic algorithm & numerical solver

There are two fundamental approaches in hydrochemistry: Law of mass action (LMA) and Gibbs energy minimization (GEM). [3] The program aqion belongs to the category LMA approach. In a nutshell: A system of NB independent basis components j (i.e. primary species), that combines to form NS secondary species i, is represented by a set of mass-action and mass-balance equations:

(1)       mass action law:              with i = 1 ... NS

(2)       mass balance law:              with j = 1 ... NB

where Ki is the equilibrium constant of formation of the secondary species i, and νi,j represents the stoichiometric coefficient of basis species j in secondary species i (the values of νj,i can be positive or negative). Here, activities ai are symbolized by curly brackets {i} while concentrations ci by rectangular brackets [i]. Both quantities are related by the

(3)       activity correction:       

with γi as the activity coefficient calculated by the Debye–Hückel equation and/or Davies equation. Inserting Eq.(1) into Eq.(2) yields a nonlinear polynomial function fj for the j-th basis species:

(4)      

which is the objective function of the Newton–Raphson method.

To solve Eq.(4) aqion adopts the numerical solver from the open-source software PhreeqC. [1] [4] The equilibrium constants Ki are taken from the thermodynamic database wateq4f. [5]

Examples, test & verification

The software aqion is shipped with a set of example solutions (input waters) and a tutorial how to attack typical water-related problems (online-manual with about 40 examples). More examples and exercises for testing and re-run can be found in classical textbooks of hydrochemistry. [6] [7] [8]

The program was verified by benchmark tests of specific industry standards. [9]

Screenshots

Related Research Articles

In a chemical reaction, chemical equilibrium is the state in which both the reactants and products are present in concentrations which have no further tendency to change with time, so that there is no observable change in the properties of the system. This state results when the forward reaction proceeds at the same rate as the reverse reaction. The reaction rates of the forward and backward reactions are generally not zero, but they are equal. Thus, there are no net changes in the concentrations of the reactants and products. Such a state is known as dynamic equilibrium.

<span class="mw-page-title-main">Stoichiometry</span> Calculation of relative weights of reactants and products in chemical reactions

Stoichiometry is the relationship between the weights of reactants and products before, during, and following chemical reactions.

Solubility equilibrium is a type of dynamic equilibrium that exists when a chemical compound in the solid state is in chemical equilibrium with a solution of that compound. The solid may dissolve unchanged, with dissociation, or with chemical reaction with another constituent of the solution, such as acid or alkali. Each solubility equilibrium is characterized by a temperature-dependent solubility product which functions like an equilibrium constant. Solubility equilibria are important in pharmaceutical, environmental and many other scenarios.

Students <i>t</i>-distribution Probability distribution

In probability and statistics, Student's t-distribution is a continuous probability distribution that generalizes the standard normal distribution. Like the latter, it is symmetric around zero and bell-shaped.

A chemical equation is the symbolic representation of a chemical reaction in the form of symbols and chemical formulas. The reactant entities are given on the left-hand side and the product entities are on the right-hand side with a plus sign between the entities in both the reactants and the products, and an arrow that points towards the products to show the direction of the reaction. The chemical formulas may be symbolic, structural, or intermixed. The coefficients next to the symbols and formulas of entities are the absolute values of the stoichiometric numbers. The first chemical equation was diagrammed by Jean Beguin in 1615.

The self-ionization of water (also autoionization of water, and autodissociation of water, or simply dissociation of water) is an ionization reaction in pure water or in an aqueous solution, in which a water molecule, H2O, deprotonates (loses the nucleus of one of its hydrogen atoms) to become a hydroxide ion, OH. The hydrogen nucleus, H+, immediately protonates another water molecule to form a hydronium cation, H3O+. It is an example of autoprotolysis, and exemplifies the amphoteric nature of water.

The standard enthalpy of reaction for a chemical reaction is the difference between total product and total reactant molar enthalpies, calculated for substances in their standard states. The value can be approximately interpreted in terms of the total of the chemical bond energies for bonds broken and bonds formed.

<span class="mw-page-title-main">Unified neutral theory of biodiversity</span> Theory of evolutionary biology

The unified neutral theory of biodiversity and biogeography is a theory and the title of a monograph by ecologist Stephen P. Hubbell. It aims to explain the diversity and relative abundance of species in ecological communities. Like other neutral theories of ecology, Hubbell assumes that the differences between members of an ecological community of trophically similar species are "neutral", or irrelevant to their success. This implies that niche differences do not influence abundance and the abundance of each species follows a random walk. The theory has sparked controversy, and some authors consider it a more complex version of other null models that fit the data better.

<span class="mw-page-title-main">True anomaly</span> Parameter of Keplerian orbits

In celestial mechanics, true anomaly is an angular parameter that defines the position of a body moving along a Keplerian orbit. It is the angle between the direction of periapsis and the current position of the body, as seen from the main focus of the ellipse.

In thermodynamics, an activity coefficient is a factor used to account for deviation of a mixture of chemical substances from ideal behaviour. In an ideal mixture, the microscopic interactions between each pair of chemical species are the same and, as a result, properties of the mixtures can be expressed directly in terms of simple concentrations or partial pressures of the substances present e.g. Raoult's law. Deviations from ideality are accommodated by modifying the concentration by an activity coefficient. Analogously, expressions involving gases can be adjusted for non-ideality by scaling partial pressures by a fugacity coefficient.

The principle of detailed balance can be used in kinetic systems which are decomposed into elementary processes. It states that at equilibrium, each elementary process is in equilibrium with its reverse process.

The molar conductivity of an electrolyte solution is defined as its conductivity divided by its molar concentration.

Equilibrium constants are determined in order to quantify chemical equilibria. When an equilibrium constant K is expressed as a concentration quotient,

<span class="mw-page-title-main">UNIFAC</span> Liquid equilibrium model in statistical thermodynamics

In statistical thermodynamics, the UNIFAC method is a semi-empirical system for the prediction of non-electrolyte activity in non-ideal mixtures. UNIFAC uses the functional groups present on the molecules that make up the liquid mixture to calculate activity coefficients. By using interactions for each of the functional groups present on the molecules, as well as some binary interaction coefficients, the activity of each of the solutions can be calculated. This information can be used to obtain information on liquid equilibria, which is useful in many thermodynamic calculations, such as chemical reactor design, and distillation calculations.

An osmotic coefficient is a quantity which characterises the deviation of a solvent from ideal behaviour, referenced to Raoult's law. It can be also applied to solutes. Its definition depends on the ways of expressing chemical composition of mixtures.

Equilibrium chemistry is concerned with systems in chemical equilibrium. The unifying principle is that the free energy of a system at equilibrium is the minimum possible, so that the slope of the free energy with respect to the reaction coordinate is zero. This principle, applied to mixtures at equilibrium provides a definition of an equilibrium constant. Applications include acid–base, host–guest, metal–complex, solubility, partition, chromatography and redox equilibria.

MOSCED is a thermodynamic model for the estimation of limiting activity coefficients. From a historical point of view MOSCED can be regarded as an improved modification of the Hansen method and the Hildebrand solubility model by adding higher interaction term such as polarity, induction and separation of hydrogen bonding terms. This allows the prediction of polar and associative compounds, which most solubility parameter models have been found to do poorly. In addition to making quantitative prediction, MOSCED can be used to understand fundamental molecular level interaction for intuitive solvent selection and formulation.

In chemistry, ion transport number, also called the transference number, is the fraction of the total electric current carried in an electrolyte by a given ionic species i:

Geochemical modeling or theoretical geochemistry is the practice of using chemical thermodynamics, chemical kinetics, or both, to analyze the chemical reactions that affect geologic systems, commonly with the aid of a computer. It is used in high-temperature geochemistry to simulate reactions occurring deep in the Earth's interior, in magma, for instance, or to model low-temperature reactions in aqueous solutions near the Earth's surface, the subject of this article.

<span class="mw-page-title-main">Total inorganic carbon</span> Sum of the inorganic carbon species

Total inorganic carbon is the sum of the inorganic carbon species.

References

  1. 1 2 Parkhurst, D.L. and C.A.J. Appelo: User's Guide to PHREEQC (version 2), a computer program for speciation, batch-reaction, one-dimensional transport and inverse geochemical calculations. USGS Water-Resources Investigations Report 99-4259, 1999
  2. Note: The upper limit is sea water.
  3. http://www.kristall.uni-frankfurt.de/media/handouts/GEM-lecture.PDF%5B%5D
  4. Remark: To keep things apart, the numerical solver of PhreeqC is outsourced from aqion.exe into a separate DLL.
  5. Ball J. W. and D. K. Nordstrom: WATEQ4F – "User’s manual with revised thermodynamic data base and test cases for calculating speciation of major, trace and redox elements in natural waters", USGS Open-File Report 90-129, 185 p, 1991.
  6. Stumm, W. and J. J. Morgan: Aquatic Chemistry, Chemical Equilibria and Rates in Natural Waters (3rd ed.), John Wiley & Sons, Inc., New York, 1996, ISBN   978-0471511854
  7. Morel, F. M. M. and J. G. Hering: Principles and Applications of Aquatic Chemistry (2nd ed.), John Wiley, New York, 1993, ISBN   978-0471548966
  8. Appelo, C. A. J. and D. Postma: Geochemistry, Groundwater, and Pollution. Taylor & Francis, 2005, ISBN   978-0415364287
  9. DIN 38404-10: German standard methods for the examination of water, waste water and sludge - Physical and physicochemical parameters (group C) - Determination of calcite saturation of water (C 10)