CHEMKIN

Last updated

CHEMKIN is a proprietary software tool for solving complex chemical kinetics problems. It is used worldwide in the combustion, [1] chemical processing, [2] microelectronics [ citation needed ] and automotive [ citation needed ] industries, and also in atmospheric science. [3] It was originally developed at Sandia National Laboratories and is now developed by a US company, Reaction Design.

Contents

CHEMKIN solves thousands of reaction combinations to develop a comprehensive understanding of a particular process, which might involve multiple chemical species, concentration ranges, and gas temperatures.

Chemical kinetics simulation software allows for a more time-efficient investigation of a potential new process compared to direct laboratory investigation[ citation needed ].

One important driver for the development and use of CHEMKIN is the reduction of pollutants, such as NOx. As these pollutants become more tightly regulated through agreements by agencies such as the United States Environmental Protection Agency and the California Air Resource Board (CARB), researchers are making increasing use of simulation technology[ citation needed ].

One limitation of CHEMKIN is that it assumes the reaction vessel has a relatively simple geometry[ citation needed ], whereas sometimes this is not the case. For that reason, a related program called KINetics is often used in conjunction with Computational Fluid Dynamics tools. CFD programs are better able to account for geometric complexity, at the expense of being more limited in their treatment of the underlying chemistry of the reactive process being studied[ citation needed ].

Reaction Design was acquired by ANSYS in 2014 so Chemkin and related products are now available through ANSYS. [4]

See also

Related Research Articles

Combustion Chemical reaction

Combustion, or burning, is a high-temperature exothermic redox chemical reaction between a fuel and an oxidant, usually atmospheric oxygen, that produces oxidized, often gaseous products, in a mixture termed as smoke. Combustion doesn't always result in fire, but when it does, a flame is a characteristic indicator of the reaction. While the activation energy must be overcome to initiate combustion, the heat from a flame may provide enough energy to make the reaction self-sustaining. Combustion is often a complicated sequence of elementary radical reactions. Solid fuels, such as wood and coal, first undergo endothermic pyrolysis to produce gaseous fuels whose combustion then supplies the heat required to produce more of them. Combustion is often hot enough that incandescent light in the form of either glowing or a flame is produced. A simple example can be seen in the combustion of hydrogen and oxygen into water vapor, a reaction commonly used to fuel rocket engines. This reaction releases 242 kJ/mol of heat and reduces the enthalpy accordingly :

Oxide Chemical compound with at least one oxygen atom

An oxide is a chemical compound that contains at least one oxygen atom and one other element in its chemical formula. "Oxide" itself is the dianion of oxygen, an O2– atom. Metal oxides thus typically contain an anion of oxygen in the oxidation state of −2. Most of the Earth's crust consists of solid oxides, the result of elements being oxidized by the oxygen in air or in water. Even materials considered pure elements often develop an oxide coating. For example, aluminium foil develops a thin skin of Al2O3 (called a passivation layer) that protects the foil from further corrosion. Certain elements can form multiple oxides, differing in the amounts of the element combining with the oxygen. Examples are carbon, iron, nitrogen (see nitrogen oxide), silicon, titanium, and aluminium. In such cases the oxides are distinguished by specifying the numbers of atoms involved, as in carbon monoxide and carbon dioxide, or by specifying the element's oxidation number, as in iron(II) oxide and iron(III) oxide.

Environmental engineering integration of sciences and engineering principles to improve the natural environment for life

Environmental engineering is a professional engineering discipline that takes from broad scientific topics like chemistry, biology, ecology, geology, hydraulics, hydrology, microbiology, and mathematics to create solutions that will protect and also improve the health of living organisms and improve the quality of the environment. Environmental engineering is a sub-discipline of civil engineering, chemical engineering and mechanical engineering.

Chemical kinetics, also known as reaction kinetics, is the branch of physical chemistry that is concerned with understanding the rates of chemical reactions. It is to be contrasted with thermodynamics, which deals with the direction in which a process occurs but in itself tells nothing about its rate. Chemical kinetics includes investigations of how experimental conditions influence the speed of a chemical reaction and yield information about the reaction's mechanism and transition states, as well as the construction of mathematical models that also can describe the characteristics of a chemical reaction.

Fluidized bed combustion technology used to burn solid fuels

Fluidized bed combustion (FBC) is a combustion technology used to burn solid fuels.

Atmospheric chemistry The branch of atmospheric science in which the chemistry of the atmosphere is studied

Atmospheric chemistry is a branch of atmospheric science in which the chemistry of the Earth's atmosphere and that of other planets is studied. It is a multidisciplinary approach of research and draws on environmental chemistry, physics, meteorology, computer modeling, oceanography, geology and volcanology and other disciplines. Research is increasingly connected with other areas of study such as climatology.

COSILAB is a software tool for solving complex chemical kinetics problems. It is used worldwide in research and industry, in particular in automotive, combustion, and chemical processing applications.

In atmospheric chemistry, NO
x
is a generic term for the nitrogen oxides that are most relevant for air pollution, namely nitric oxide (NO) and nitrogen dioxide. These gases contribute to the formation of smog and acid rain, as well as affecting tropospheric ozone.

In engineering, mathematics, physics, chemistry, bioinformatics, computational biology, meteorology and computer science, multiscale modeling or multiscale mathematics is the field of solving problems which have important features at multiple scales of time and/or space. Important problems include multiscale modeling of fluids, solids, polymers, proteins, nucleic acids as well as various physical and chemical phenomena.

Autochem automatic code generator and documentor for atmospheric chemistry modeling

AutoChem is NASA release software that constitutes an automatic computer code generator and documenter for chemically reactive systems written by David Lary between 1993 and the present. It was designed primarily for modeling atmospheric chemistry, and in particular, for chemical data assimilation.

The Kinetic PreProcessor (KPP) is an open-source software tool used in atmospheric chemistry. Taking a set of chemical reactions and their rate coefficients as input, KPP generates Fortran 90, FORTRAN 77, C, or Matlab code of the resulting ordinary differential equations (ODEs). Solving the ODEs allows the temporal integration of the kinetic system. Efficiency is obtained by exploiting the sparsity structures of the Jacobian and of the Hessian. A comprehensive suite of stiff numerical integrators is also provided. Moreover, KPP can be used to generate the tangent linear model, as well as the continuous and discrete adjoint models of the chemical system.

Chemical WorkBench is a proprietary simulation software tool aimed at the reactor scale kinetic modeling of homogeneous gas-phase and heterogeneous processes and kinetic mechanism development. It can be effectively used for the modeling, optimization, and design of a wide range of industrially and environmentally important chemistry-loaded processes. Chemical WorkBench is a modeling environment based on advanced scientific approaches, complementary databases, and accurate solution methods. Chemical WorkBench is developed and distributed by Kintech Lab.

Reaction Design

Reaction Design is a San Diego-based developer of combustion simulation software used by engineers to design cleaner burning and fuel-efficient combustors and engines, found in everything from automobiles to turbines for power generation and aircraft propulsion to large diesel engines that use pistons the size of rooms to propel ships locomotives. The technology is also used to model spray vaporization in electronic materials processing applications and predict mixing reactions in chemical plants. Ansys, a leader in engineering simulation software, acquired Reaction Design in January 2014.

KIVA (software) Computational Fluid Dynamics software

KIVA is a family of Fortran-based Computational Fluid Dynamics software developed by Los Alamos National Laboratory (LANL). The software predicts complex fuel and air flows as well as ignition, combustion, and pollutant-formation processes in engines. The KIVA models have been used to understand combustion chemistry processes, such as auto-ignition of fuels, and to optimize diesel engines for high efficiency and low emissions. General Motors has used KIVA in the development of direct-injection, stratified charge gasoline engines as well as the fast burn, homogeneous-charge gasoline engine. Cummins reduced development time and cost by 10%–15% using KIVA to develop its high-efficiency 2007 ISB 6.7-L diesel engine that was able to meet 2010 emission standards in 2007. At the same time, the company realized a more robust design and improved fuel economy while meeting all environmental and customer constraints.

Geochemical modeling is the practice of using chemical thermodynamics, chemical kinetics, or both, to analyze the chemical reactions that affect geologic systems, commonly with the aid of a computer. It is used in high-temperature geochemistry to simulate reactions occurring deep in the Earth's interior, in magma, for instance, or to model low-temperature reactions in aqueous solutions near the Earth's surface, the subject of this article.

Combustion models for CFD refers to combustion models for computational fluid dynamics. Combustion is defined as a chemical reaction in which a hydrocarbon fuel reacts with an oxidant to form products, accompanied with the release of energy in the form of heat. Being the integral part of various engineering applications like: internal combustion engines, aircraft engines, rocket engines, furnaces, and power station combustors, combustion manifests itself as a wide domain during the design, analysis and performance characteristics stages of the above-mentioned applications. With the added complexity of chemical kinetics and achieving reacting flow mixture environment, proper modeling physics has to be incorporated during computational fluid dynamic (CFD) simulations of combustion. Hence the following discussion presents a general outline of the various adequate models incorporated with the Computational fluid dynamic code to model the process of combustion.

SRM Engine Suite engineering software

The SRM Engine Suite is an engineering software tool used for simulating fuels, combustion and exhaust gas emissions in internal combustion engine applications. It is used worldwide by leading IC engine development organisations and fuel companies. The software is developed, maintained and supported by CMCL Innovations, Cambridge, U.K.

Chemical reaction models transform physical knowledge into a mathematical formulation that can be utilized in computational simulation of practical problems in chemical engineering. Computer simulation provides the flexibility to study chemical processes under a wide range of conditions. Modeling of a chemical reaction involves solving conservation equations describing convection, diffusion, and reaction source for each component species.

Akkihebbal Ramaiah (Ravi) Ravishankara ForMemRS FAAAS FRSC is a scientist specializing in Chemistry and Atmospheric Sciences, and University Distinguished Professor in the Departments of Chemistry and Atmospheric Sciences at Colorado State University, Fort Collins.

Jennifer G. Murphy is a Canadian environmental chemist and an Associate Professor at the University of Toronto. She is known for her research how air pollutants such as increased reactive nitrogen affect the global climate. She believes that even though environmental science is a challenging subject, it is still important and applicable to society.

References

  1. Daly, D. and Nag, P., "Combustion Modeling of Soot Reduction in Diesel and Alternate Fuels using CHEMKIN®," SAE Technical Paper 2001-01-1239, 2001, doi : 10.4271/2001-01-1239.
  2. Glarborg, Peter; Miller, James A.; Kee, Robert J. (1986). "Kinetic modeling and sensitivity analysis of nitrogen oxide formation in well-stirred reactors". Combustion and Flame. 65 (2): 177–202. doi:10.1016/0010-2180(86)90018-0.
  3. Brady, BB; Martin, LR (1995). "Use of SURFACE CHEMKIN to model multiphase atmospheric chemistry: Application to nitrogen tetroxide spills". Atmospheric Environment. 29 (6): 715–726. doi:10.1016/1352-2310(94)00304-4.
  4. Quickie: ANSYS to acquire Reaction Design http://schnitgercorp.com/2013/12/04/quickie-ansys-acquire-reaction-design/