PLATO (computational chemistry)

Last updated
PLATO
Operating system Linux
License Specific to this program.

PLATO (Package for Linear-combination of ATomic Orbitals) is a suite of programs for electronic structure calculations. It receives its name from the choice of basis set (atomic orbitals) used to expand the electronic wavefunctions.

Contents

PLATO is a code, written in C, for the efficient modelling of materials. It is a tight binding code (both orthogonal and non-orthogonal), allowing for multipole charges and electron spin. It also contains Density Functional Theory programs for building tight binding models. The Density Functional Tight Binding program can be applied to systems with periodic boundary conditions in three dimension (crystals), as well as clusters and molecules. [1] [2] [3] [4]

How PLATO works

How PLATO used to perform Density Functional Theory calculations (no longer available) is summarized in several papers: [5] [6] [7] . A new set of Density Functional Theory programs is being built making use of Gaussian orbital expansions for the basis set (not yet available). The way PLATO performs tight binding simulations is summarized in the following papers: [8] [9]

Applications of PLATO

Some examples of the way it has been used are listed below.

Metals

Surfaces

Molecules

See also

References

  1. Nguyen-Manh, D.; Horsfield, A. P.; Dudarev, S. L. (2006-01-03). "Self-interstitial atom defects in bcc transition metals: Group-specific trends". Physical Review B. 73 (2). American Physical Society (APS): 020101. Bibcode:2006PhRvB..73b0101N. doi:10.1103/physrevb.73.020101. ISSN   1098-0121.
  2. Smith, Roger; Kenny, S D; Sanz-Navarro, C F; Belbruno, Joseph J (2003-10-13). "Nanostructured surfaces described by atomistic simulation methods". Journal of Physics: Condensed Matter. 15 (42). IOP Publishing: S3153 –S3169. Bibcode:2003JPCM...15S3153S. doi:10.1088/0953-8984/15/42/012. ISSN   0953-8984. S2CID   250851134.
  3. Sanville, E. J.; Vernon, L. J.; Kenny, S. D.; Smith, R.; Moghaddam, Y.; Browne, C.; Mulheran, P. (2009-12-07). "Surface and interstitial transition barriers in rutile (110) surface growth". Physical Review B. 80 (23). American Physical Society (APS): 235308. Bibcode:2009PhRvB..80w5308S. doi:10.1103/physrevb.80.235308. ISSN   1098-0121. S2CID   53310888.
  4. Gilbert, C A; Smith, R; Kenny, S D; Murphy, S T; Grimes, R W; Ball, J A (2009-06-12). "A theoretical study of intrinsic point defects and defect clusters in magnesium aluminate spinel". Journal of Physics: Condensed Matter. 21 (27). IOP Publishing: 275406. Bibcode:2009JPCM...21A5406G. doi:10.1088/0953-8984/21/27/275406. ISSN   0953-8984. PMID   21828490. S2CID   2642437.
  5. Horsfield, Andrew P. (1997-09-15). "Efficientab initiotight binding". Physical Review B. 56 (11). American Physical Society (APS): 6594–6602. Bibcode:1997PhRvB..56.6594H. doi:10.1103/physrevb.56.6594. ISSN   0163-1829.
  6. Kenny, S.; Horsfield, A.; Fujitani, Hideaki (2000). "Transferable atomic-type orbital basis sets for solids". Physical Review B. 62 (8). American Physical Society (APS): 4899–4905. Bibcode:2000PhRvB..62.4899K. doi:10.1103/physrevb.62.4899. ISSN   0163-1829.
  7. Kenny, S.D.; Horsfield, A.P. (2009). "Plato: A localised orbital based density functional theory code". Computer Physics Communications. 180 (12). Elsevier BV: 2616–2621. Bibcode:2009CoPhC.180.2616K. doi:10.1016/j.cpc.2009.08.006. ISSN   0010-4655. S2CID   12553697.
  8. Soin, Preetma; Horsfield, A.P.; Nguyen-Manh, D. (2011). "Efficient self-consistency for magnetic tight binding". Computer Physics Communications. 182 (6). Elsevier BV: 1350–1360. Bibcode:2011CoPhC.182.1350S. doi:10.1016/j.cpc.2011.01.030. ISSN   0010-4655.
  9. Boleininger, Max; Guilbert, Anne AY; Horsfield, Andrew P. (2016-10-14). "Gaussian polarizable-ion tight binding". The Journal of Chemical Physics. 145 (14). AIP Publishing: 144103. Bibcode:2016JChPh.145n4103B. doi:10.1063/1.4964391. hdl: 10044/1/40672 . ISSN   0021-9606. PMID   27782521.
  10. Nguyen-Manh, D.; Dudarev, S.L.; Horsfield, A.P. (2007). "Systematic group-specific trends for point defects in bcc transition metals: An ab initio study". Journal of Nuclear Materials. 367–370. Elsevier BV: 257–262. Bibcode:2007JNuM..367..257N. doi:10.1016/j.jnucmat.2007.03.006. ISSN   0022-3115.
  11. King, D.J.; Frangou, P.C.; Kenny, S.D. (2009). "Interaction of C60 molecules on Si(100)". Surface Science. 603 (4). Elsevier BV: 676–682. Bibcode:2009SurSc.603..676K. doi:10.1016/j.susc.2008.12.035. ISSN   0039-6028. S2CID   62822522.
  12. Boleininger, Max; Horsfield, Andrew P. (2017-07-28). "Efficient local-orbitals based method for ultrafast dynamics". The Journal of Chemical Physics. 147 (4). AIP Publishing: 044111. Bibcode:2017JChPh.147d4111B. doi:10.1063/1.4995611. hdl: 10044/1/50079 . ISSN   0021-9606. PMID   28764349.