Monocular rivalry

Last updated
Demonstration of monocular rivalry between two component sine-wave gratings: a vertical green-and-black grating and a horizontal red-and-black grating. Monocular rivalry.png
Demonstration of monocular rivalry between two component sine-wave gratings: a vertical green-and-black grating and a horizontal red-and-black grating.

Monocular rivalry is a phenomenon of human visual perception that occurs when two different images are optically superimposed. During prolonged viewing, one image becomes clearer than the other for a few moments, then the other image becomes clearer than the first for a few moments. These alternations in clarity continue at random for as long as one looks. Occasionally one image will become exclusively visible and the other image invisible.

Contents

In the demonstration, one image is a green grating and the other is a red grating. During prolonged inspection, the viewer can see the green grating as clearer than the red grating for a few moments, then the reverse. Occasionally the green grating will be all that is visible and occasionally the red grating will be all that is visible. Occasionally, at transitions, one will briefly see irregular composites of the two gratings (such as the red and green gratings superimposed but with one or two bars of the green grating invisible).

Monocular rivalry is easier to see when the component stimuli are of opposite colors, but it also occurs when the component stimuli have the same colors. As long as the two component stimuli differ spatiotemporally in some way, such as orientation (as shown), spatial frequency, or direction of movement, monocular rivalry can be seen.

History of monocular rivalry

Monocular rivalry was discovered by Marius Tscherning in 1898. [1] It was independently discovered, and named, by Breese (1899). [2] He called it monocular rivalry to distinguish it from binocular rivalry, a similar phenomenon in which the different images are presented to opposite eyes. Monocular rivalry was rediscovered by Campbell and Howell (1972). [3] They called the phenomenon monocular pattern alternation, but Campbell called it monocular rivalry in later papers, and that is the term that has stuck, even though the phenomenon does not require monocular viewing. Maier, Logothetis, and Leopold (2005)advocated calling the phenomenon pattern rivalry. [4]

After a burst of research activity in the 1970s, monocular rivalry fell out of favour when Georgeson and Phillips (1980) argued that monocular rivalry arises from afterimages and eye movements. [5] They argued that with gratings, prolonged fixation of the stimuli builds up a negative afterimage that will tend to cancel the real images, making both invisible (a form of neural adaptation). An eye movement at right angles to one grating of one half of the period of the grating will make the afterimage reinforce that original image, making it spring into visibility while the other grating remains invisible. A correct eye movement at right angles to the second grating will make it visible and leave the first invisible. Random eye movements, therefore, could be responsible for the random fluctuations in clarity and visibility of the two images.

Although afterimages and eye movements must contribute to monocular rivalry, they cannot be a complete explanation for at least four reasons: [6] First, it occurs with stimuli other than gratings for which afterimages would not cancel or reinforce the original images (e.g., Sindermann & Lüddeke, 1972). [7] Second, it occurs when the stimuli themselves are afterimages; these cannot be cancelled or reinforced by eye movements (Crassini & Broerse, 1982). [8] Third, sometimes a perceptual alternation occurs after an eye movement in the wrong direction for Georgeson and Phillips's explanation (Bradley & Schor, 1988). [9] Fourth, visibility of an irregular composite of the two images cannot be explained by eye movements. To be explained by cancellation of afterimages, such composites impossibly require that different parts of the retina move in different directions. [6]

In 1997, Andrews and Purves revived interest in monocular rivalry by showing that its alternations could be entrained by binocular rivalry alternations in an adjacent part of the visual field. [10]

Explanations of monocular rivalry

Tscherning (1898) pointed out the similarity of monocular rivalry to binocular rivalry. [1] Breese (1899) attributed monocular rivalry to the same mechanism as responsible for binocular rivalry. [2] Leopold and Logothetis (1999) argued that it, and binocular rivalry, are examples of multistable perception phenomena, including the Necker cube and Rubin vase figure. [11]

See also

Related Research Articles

<span class="mw-page-title-main">Binocular vision</span> Type of vision with two eyes facing the same direction

In biology, binocular vision is a type of vision in which an animal has two eyes capable of facing the same direction to perceive a single three-dimensional image of its surroundings. Binocular vision does not typically refer to vision where an animal has eyes on opposite sides of its head and shares no field of view between them, like in some animals.

<span class="mw-page-title-main">Phi phenomenon</span> Optical illusion of apparent motion

The term phi phenomenon is used in a narrow sense for an apparent motion that is observed if two nearby optical stimuli are presented in alternation with a relatively high frequency. In contrast to beta movement, seen at lower frequencies, the stimuli themselves do not appear to move. Instead, a diffuse, amorphous shadowlike something seems to jump in front of the stimuli and occlude them temporarily. This shadow seems to have nearly the color of the background. Max Wertheimer first described this form of apparent movement in his habilitation thesis, published 1912, marking the birth of Gestalt psychology.

<span class="mw-page-title-main">Binocular rivalry</span> Optical phenomenon

Binocular rivalry is a phenomenon of visual perception in which perception alternates between different images presented to each eye.

Multistable perception is a perceptual phenomenon in which an observer experiences an unpredictable sequence of spontaneous subjective changes. While usually associated with visual perception, multistable perception can also be experienced with auditory and olfactory percepts.

The McCollough effect is a phenomenon of human visual perception in which colorless gratings appear colored contingent on the orientation of the gratings. It is an aftereffect requiring a period of induction to produce it. For example, if someone alternately looks at a red horizontal grating and a green vertical grating for a few minutes, a black-and-white horizontal grating will then look greenish and a black-and-white vertical grating will then look pinkish. The effect is remarkable because, although it diminishes rapidly with repeated testing, it has been reported to last up to 2.8 months when exposure to testing is limited.

Stereopsis is the component of depth perception retrieved by means of binocular disparity through binocular vision. It is not the only contributor to depth perception, but it is a major one. Binocular vision occurs because each eye receives a different image due to their slightly different positions in one's head. These positional differences are referred to as "horizontal disparities" or, more generally, "binocular disparities". Disparities are processed in the visual cortex of the brain to yield depth perception. While binocular disparities are naturally present when viewing a real three-dimensional scene with two eyes, they can also be simulated by artificially presenting two different images separately to each eye using a method called stereoscopy. The perception of depth in such cases is also referred to as "stereoscopic depth".

Microsaccades are a kind of fixational eye movement. They are small, jerk-like, involuntary eye movements, similar to miniature versions of voluntary saccades. They typically occur during prolonged visual fixation, not only in humans, but also in animals with foveal vision. Microsaccade amplitudes vary from 2 to 120 arcminutes. The first empirical evidence for their existence was provided by Robert Darwin, the father of Charles Darwin.

<span class="mw-page-title-main">Hering's law of equal innervation</span>

Hering's law of equal innervation is used to explain the conjugacy of saccadic eye movement in stereoptic animals. The law proposes that conjugacy of saccades is due to innate connections in which the eye muscles responsible for each eye's movements are innervated equally. The law also states that apparent monocular eye movements are actually the summation of conjugate version and disjunctive eye movements. The law was put forward by Ewald Hering in the 19th century, though the underlying principles of the law date back considerably. Aristotle had commented upon this phenomenon and Ptolemy put forward a theory of why such a physiological law might be useful. The 11th century scholar Ibn al-Haytham stated that eyes move together and equally so that the visual axes converge on an object of interest in his Book of Optics.

<span class="mw-page-title-main">Infant visual development</span>

Infant vision concerns the development of visual ability in human infants from birth through the first years of life. The aspects of human vision which develop following birth include visual acuity, tracking, color perception, depth perception, and object recognition.

<span class="mw-page-title-main">Optokinetic response</span>

The optokinetic reflex (OKR), also referred to as the optokinetic response, or optokinetic nystagmus (OKN), is a compensatory reflex that supports visual image stabilization. The purpose of OKR is to prevent image blur on the retina that would otherwise occur when an animal moves its head or navigates through its environment. This is achieved by the reflexive movement of the eyes in the same direction as image motion, so as to minimize the relative motion of the visual scene on the eye. OKR is best evoked by slow, rotational motion, and operates in coordination with several complementary reflexes that also support image stabilization, including the vestibulo-ocular reflex (VOR).

Flash suppression is a phenomenon of visual perception in which an image presented to one eye is suppressed by a flash of another image presented to the other eye.

<span class="mw-page-title-main">Motion-induced blindness</span> Optical illusion

Motion Induced Blindness (MIB), also known as Bonneh's illusion is a visual illusion in which a large, continuously moving pattern erases from perception some small, continuously presented, stationary dots when one looks steadily at the center of the display. It was discovered by Bonneh, Cooperman, and Sagi (2001), who used a swarm of blue dots moving on a virtual sphere as the larger pattern and three small yellow dots as the smaller pattern. They found that after about 10 seconds, one or more of the dots disappeared for brief, random times.

<span class="mw-page-title-main">Neural correlates of consciousness</span> Neuronal events sufficient for a specific conscious percept

The neural correlates of consciousness (NCC) are the minimal set of neuronal events and mechanisms sufficient for the occurrence of the mental states to which they are related. Neuroscientists use empirical approaches to discover neural correlates of subjective phenomena; that is, neural changes which necessarily and regularly correlate with a specific experience. The set should be minimal because, under the materialist assumption that the brain is sufficient to give rise to any given conscious experience, the question is which of its components are necessary to produce it.

<span class="mw-page-title-main">Chromostereopsis</span> Visual illusion whereby the impression of depth is conveyed in two-dimensional color images

Chromostereopsis is a visual illusion whereby the impression of depth is conveyed in two-dimensional color images, usually of red–blue or red–green colors, but can also be perceived with red–grey or blue–grey images. Such illusions have been reported for over a century and have generally been attributed to some form of chromatic aberration.

Continuous flash suppression (CFS) is an adapted version of the original flash suppression method, first reported in 2004. In CFS, the first eye is presented with a static stimulus, such as a schematic face, while the second eye is presented with a series of rapidly changing stimuli. The result is the static stimulus becomes consciously repressed by the stimuli presented in the second eye. A variant of CFS to suppress a dynamic stimulus is also reported.

Binocular neurons are neurons in the visual system that assist in the creation of stereopsis from binocular disparity. They have been found in the primary visual cortex where the initial stage of binocular convergence begins. Binocular neurons receive inputs from both the right and left eyes and integrate the signals together to create a perception of depth.

<span class="mw-page-title-main">Vernier acuity</span>

Vernier acuity is a type of visual acuity – more precisely of hyperacuity – that measures the ability to discern a disalignment among two line segments or gratings. A subject's vernier acuity is the smallest visible offset between the stimuli that can be detected. Because the disalignments are often much smaller than the diameter and spacing of retinal receptors, vernier acuity requires neural processing and "pooling" to detect it. Because vernier acuity exceeds acuity by far, the phenomenon has been termed hyperacuity. Vernier acuity develops rapidly during infancy and continues to slowly develop throughout childhood. At approximately three to twelve months old, it surpasses grating acuity in foveal vision in humans. However, vernier acuity decreases more quickly than grating acuity in peripheral vision. Vernier acuity was first explained by Ewald Hering in 1899, based on earlier data by Alfred Volkmann in 1863 and results by Ernst Anton Wülfing in 1892.

Multistable auditory perception is a cognitive phenomenon in which certain auditory stimuli can be perceived in multiple ways. While multistable perception has been most commonly studied in the visual domain, it also has been observed in the auditory and olfactory modalities. In the olfactory domain, different scents are piped to the two nostrils, while in the auditory domain, researchers often examine the effects of binaural sequences of pure tones. Generally speaking, multistable perception has three main characteristics: exclusivity, implying that the multiple perceptions cannot simultaneously occur; randomness, indicating that the duration of perceptual phases follows a random law, and inevitability, meaning that subjects are unable to completely block out one percept indefinitely.

Stereoscopic motion, as introduced by Béla Julesz in his book Foundations of Cyclopean Perception of 1971, is a translational motion of figure boundaries defined by changes in binocular disparity over time in a real-life 3D scene, a 3D film or other stereoscopic scene. This translational motion gives rise to a mental representation of three dimensional motion created in the brain on the basis of the binocular motion stimuli. Whereas the motion stimuli as presented to the eyes have a different direction for each eye, the stereoscopic motion is perceived as yet another direction on the basis of the views of both eyes taken together. Stereoscopic motion, as it is perceived by the brain, is also referred to as cyclopean motion, and the processing of visual input that takes place in the visual system relating to stereoscopic motion is called stereoscopic motion processing.

Binocular switch suppression (BSS) is a technique to suppress usually salient images from an individual's awareness, a type of experimental manipulation used in visual perception and cognitive neuroscience. In BSS, two images of differing signal strengths are repetitively switched between the left and right eye at a constant rate of 1 Hertz. During this process of switching, the image of lower contrast and signal strength is perceptually suppressed for a period of time.

References

  1. 1 2 O’Shea, R. P., Roeber, U., & Wade, N. J. (2017). On the discovery of monocular rivalry by Tscherning in 1898: Translation and review. i-Perception, 8(6), 1-12. https://dx.doi.org/10.1177/2041669517743523
  2. 1 2 Breese, B. B. (1899). "On inhibition". Psychological Monographs. 3: 1–65.
  3. Campbell, F. W.; Howell, E. R. (1972). "Monocular alternation: A method for the investigation of pattern vision". Journal of Physiology. 225 (2): 19P–21P. PMID   5074381.
  4. Maier, A.; Logothetis, N. K.; Leopold, D. A. (2005). "Global competition dictates local suppression in pattern rivalry". Journal of Vision. 5 (9): 668–677. doi: 10.1167/5.9.2 . PMID   16356077.
  5. Georgeson, M. A.; Phillips, R. (1980). "Angular selectivity of monocular rivalry: Experiment and computer simulation". Vision Research. 20 (11): 1007–1013. doi:10.1016/0042-6989(80)90084-x. PMID   7210512. S2CID   1377000.
  6. 1 2 O'Shea, R. P.; Parker, A.; La Rooy, D. J.; Alais, D. (2009). "Monocular rivalry exhibits three hallmarks of binocular rivalry: Evidence for common processes" (PDF). Vision Research. 49 (7): 671–681. doi:10.1016/j.visres.2009.01.020. PMID   19232529. S2CID   1638740.
  7. Sindermann, F.; Lüddeke, H. (1972). "Monocular analogues to binocular contour rivalry". Vision Research. 12 (5): 763–772. doi:10.1016/0042-6989(72)90002-8. PMID   5037699.
  8. Crassini, B.; Broerse, J. (1982). "Monocular rivalry occurs without eye movements". Vision Research. 22 (1): 203–204. doi:10.1016/0042-6989(82)90184-5. PMID   7101747. S2CID   38588095.
  9. Bradley, A.; Schor, C. (1988). "The role of eye movements and masking in monocular rivalry". Vision Research. 28 (10): 1129–1137. doi:10.1016/0042-6989(88)90139-3. PMID   3257015. S2CID   24326020.
  10. Andrews, T. J.; Purves, D. (1997). "Similarities in normal and binocularly rivalrous viewing". Proceedings of the National Academy of Sciences of the United States of America . 94 (18): 9905–9908. Bibcode:1997PNAS...94.9905A. doi: 10.1073/pnas.94.18.9905 . PMC   23290 . PMID   9275224.
  11. Leopold, D. A.; Logothetis, N. K. (1999). "Multistable phenomena: Changing views in perception". Trends in Cognitive Sciences. 3 (7): 254–264. doi:10.1016/S1364-6613(99)01332-7. PMID   10377540. S2CID   16549939.