Mount Cap formation

Last updated
Mount Cap Formation
Stratigraphic range: Cambrian
Type Formation
Lithology
Primary Shale, siltstone
Other Sandstone
Location
Coordinates 63°24′23″N123°12′22″W / 63.40639°N 123.20611°W / 63.40639; -123.20611
Region Northwest Territories
CountryFlag of Canada (Pantone).svg  Canada
Canada relief map 2.svg
Dark Green 004040 pog.svg
Mount Cap formation (Canada)

The Mount Cap Formation is a geologic formation exposed in the Mackenzie Mountains, northern Canada. It was deposited in a shallow shelf setting in the late Early Cambrian, [1] and contains an array of Burgess Shale-type microfossils that have been recovered by acid maceration. [2]

Contents

Description

The formation is 100 to 300 metres (330 to 980 ft), and comprises shales, siltstones and sandstones with a high glauconite content. [1] It has been exposed to remarkably little metamorphic activity given its great age; it is dated to the Bonnia Olenellus Trilobite Zone. [1] This zone lies within the Lower Cambrian Waucoban stage in North America, which is equivalent to the Caerfai in Wales, and thus the Comley of England, [3] and has yet to be formally ratified. Nevertheless, this makes it just younger than the earliest trilobites,[ dubious ] and thus the earliest known Burgess Shale-type deposit, though this is disputable when considering the age of Chengjiang County fauna. Its organic-walled fauna, known as the "Little Bear biota", includes both non-mineralized and originally-mineralized taxa, including hyolith and trilobite fragments, anomalocaridid claws, arthropod carapaces and brachiopods. [4]

See also

Related Research Articles

<span class="mw-page-title-main">Burgess Shale</span> Fossil-bearing rock formation in the Canadian Rockies

The Burgess Shale is a fossil-bearing deposit exposed in the Canadian Rockies of British Columbia, Canada. It is famous for the exceptional preservation of the soft parts of its fossils. At 508 million years old, it is one of the earliest fossil beds containing soft-part imprints.

<span class="mw-page-title-main">Cambrian</span> First period of the Paleozoic Era, 539–485 million years ago

The Cambrian Period is the first geological period of the Paleozoic Era, and of the Phanerozoic Eon. The Cambrian lasted 53.4 million years from the end of the preceding Ediacaran Period 538.8 million years ago (mya) to the beginning of the Ordovician Period 485.4 mya. Its subdivisions, and its base, are somewhat in flux.

<span class="mw-page-title-main">Maotianshan Shales</span> Series of Early Cambrian deposits in the Chiungchussu Formation

The Maotianshan Shales (帽天山页岩) are a series of Early Cambrian sedimentary deposits in the Chiungchussu Formation, famous for their Konservat Lagerstätten, deposits known for the exceptional preservation of fossilized organisms or traces. The Maotianshan Shales form one of some forty Cambrian fossil locations worldwide exhibiting exquisite preservation of rarely preserved, non-mineralized soft tissue, comparable to the fossils of the Burgess Shale of British Columbia, Canada. They take their name from Maotianshan Hill in Chengjiang County, Yunnan Province, China.

<i>Marrella</i> Extinct genus of Arthropods

Marrella is an extinct genus of marrellomorph arthropod known from the Middle Cambrian of North America and Asia. It is the most common animal represented in the Burgess Shale of British Columbia, Canada, with tens of thousands of specimens collected. Much rarer remains are also known from deposits in China.

<i>Wiwaxia</i> Genus of Cambrian animals

Wiwaxia is a genus of soft-bodied animals that were covered in carbonaceous scales and spines that protected it from predators. Wiwaxia fossils—mainly isolated scales, but sometimes complete, articulated fossils—are known from early Cambrian and middle Cambrian fossil deposits across the globe. The living animal would have measured up to 5 centimetres (2 in) when fully grown, although a range of juvenile specimens are known, the smallest being 2 millimetres (0.08 in) long.

<i>Anomalocaris</i> Extinct genus of cambrian radiodont

Anomalocaris is an extinct genus of radiodont, an order of early-diverging stem-group arthropods.

The Kaili Formation(凯里組) is a stratigraphic formation which was deposited during the Lower and Middle Cambrian. The formation is approximately 200 metres (660 ft) thick and was named after the city Kaili in the Guizhou province of southwest China.

<i>Naraoia</i> Extinct genus of arthropods

Naraoia is a genus of small to average size marine arthropods within the family Naraoiidae, that lived from the early Cambrian to the late Silurian period. The species are characterized by a large alimentary system and sideways oriented antennas.

The Burgess Shale of British Columbia is famous for its exceptional preservation of mid-Cambrian organisms. Around 69 other sites have been discovered of a similar age, with soft tissues preserved in a similar, though not identical, fashion. Additional sites with a similar form of preservation are known from the Ediacaran and Ordovician periods.

A number of assemblages bear fossil assemblages similar in character to that of the Burgess Shale. While many are also preserved in a similar fashion to the Burgess Shale, the term "Burgess Shale-type fauna" covers assemblages based on taxonomic criteria only.

The fossils of the Burgess Shale, like the Burgess Shale itself, are fossils that formed around 505 million years ago in the mid-Cambrian period. They were discovered in Canada in 1886, and Charles Doolittle Walcott collected over 65,000 specimens in a series of field trips up to the alpine site from 1909 to 1924. After a period of neglect from the 1930s to the early 1960s, new excavations and re-examinations of Walcott's collection continue to reveal new species, and statistical analysis suggests that additional discoveries will continue for the foreseeable future. Stephen Jay Gould's 1989 book Wonderful Life describes the history of discovery up to the early 1980s, although his analysis of the implications for evolution has been contested.

<span class="mw-page-title-main">Stephen Formation</span>

The Stephen Formation is a geologic formation exposed in the Canadian Rockies of British Columbia and Alberta, on the western edge of the Western Canada Sedimentary Basin. It consists of shale, thin-bedded limestone, and siltstone that was deposited during Middle Cambrian time. It is famous for the exceptional preservation of soft-bodied fossils: the Burgess Shale biota. The formation overlies the Cathedral escarpment, a submarine cliff; consequently it is divided into two quite separate parts, the 'thin' sequence deposited in the shallower waters atop the escarpment, and the 'thick' sequence deposited in the deeper waters beyond the cliff. Because the 'thick' Stephen Formation represents a distinct lithofacies, some authors suggest it warrants its own name, and dub it the Burgess Shale Formation. The stratigraphy of the Thin Stephen Formation has not been subject to extensive study, so except where explicitly mentioned this article applies mainly to the Thick Stephen Formation.

Hamptonia is an extinct genus of sea sponge known from the Middle Cambrian Burgess Shale and the Lower Ordovician Fezouata formation. It was first described in 1920 by Charles Doolittle Walcott. 48 specimens of Hamptonia are known from the Greater Phyllopod bed, where they comprise < 0.1% of the community.

The Mount Stephen trilobite beds are a series of fossil strata on Mount Stephen, British Columbia that contain exceptionally preserved fossil material. Part of the same stratigraphic unit as the Burgess Shale deposit, many non-mineralized parts are preserved; in addition, a high density of trilobite fossils is present.

The Poleta Formation is a geological unit known for the exceptional fossil preservation in the Indian Springs Lagerstätte, located in eastern California and Nevada.

<span class="mw-page-title-main">Marjum Formation</span>

The Marjum Formation is a Cambrian geological formation that overlies the Wheeler Shale in the House Range, Utah. It is named after its type locality, Marjum Pass, and was defined in 1908. The formation is known for its occasional preservation of soft-bodied tissue, and is slightly younger than the Burgess Shale, falling in the Ptychagnostus praecurrens trilobite zone.

Mongolitubulus is a form genus encapsulating a range of ornamented conical small shelly fossils of the Cambrian period. It is potentially synonymous with Rushtonites, Tubuterium and certain species of Rhombocorniculum, and owing to the similarity of the genera, they are all dealt with herein. Organisms that bore Mongolitubulus-like projections include trilobites, bradoriid arthropods and hallucigeniid lobopodians.

The Mount Whyte Formation is a stratigraphic unit that is present on the western edge of the Western Canada Sedimentary Basin in the southern Canadian Rockies and the adjacent southwestern Alberta plains. It was deposited during Middle Cambrian time and consists of shale interbedded with other siliciclastic rock types and limestones. It was named for Mount Whyte in Banff National Park by Charles Doolittle Walcott, the discoverer of the Burgess shale fossils, and it includes several genera of fossil trilobites.

William Harold Fritz was a geologist who worked for the Geological Survey of Canada. He is known for his work in stratigraphy and on olenelloid trilobites.

<span class="mw-page-title-main">Paleobiota of the Burgess Shale</span>

This is a list of the biota of the Burgess Shale, a Cambrian lagerstätte located in Yoho National Park in Canada.

References

  1. 1 2 3 Butterfield, N. J. (1994). "Burgess Shale-type fossils from a Lower Cambrian shallow-shelf sequence in northwestern Canada". Nature. 369 (6480): 477–479. Bibcode:1994Natur.369..477B. doi:10.1038/369477a0. S2CID   4326311.
  2. Harvey, T.; Butterfield, N. (2008). "Sophisticated particle-feeding in a large Early Cambrian crustacean". Nature. 452 (7189): 868–871. Bibcode:2008Natur.452..868H. doi:10.1038/nature06724. PMID   18337723. S2CID   4373816.
  3. Siveter, D. J.; Williams, M. (1995). "An early Cambrian assignment for the Caerfai Group of South Wales". Journal of the Geological Society. 152 (2): 221–224. Bibcode:1995JGSoc.152..221S. doi:10.1144/gsjgs.152.2.0221. S2CID   140607675.
  4. Butterfield, N. J.; Nicholas, C. J. (1996). "Burgess Shale-Type Preservation of Both Non-Mineralizing and 'Shelly' Cambrian Organisms from the Mackenzie Mountains, Northwestern Canada". Journal of Paleontology. 70 (6): 893–899. Bibcode:1996JPal...70..893B. doi:10.1017/S0022336000038579. JSTOR   1306492. S2CID   133427906.