Mrs. Miniver's problem

Last updated

Three instances of Mrs. Miniver's problem. In each case the inner yellow area equals the total area of the surrounding blue regions. The left case shows two circles of equal areas, the right case shows one circle with twice the area of the other, and the middle case is intermediate between these two. Mrs Miniver's Problem.svg
Three instances of Mrs. Miniver's problem. In each case the inner yellow area equals the total area of the surrounding blue regions. The left case shows two circles of equal areas, the right case shows one circle with twice the area of the other, and the middle case is intermediate between these two.

Mrs. Miniver's problem is a geometry problem about the area of circles. It asks how to place two circles and of given radii in such a way that the lens formed by intersecting their two interiors has equal area to the symmetric difference of and (the area contained in one but not both circles). [1] It was named for an analogy between geometry and social dynamics enunciated by fictional character Mrs. Miniver, who "saw every relationship as a pair of intersecting circles". Its solution involves a transcendental equation.

Contents

Origin

The problem derives from "A Country House Visit", one of Jan Struther's newspaper articles appearing in the Times of London between 1937 and 1939 featuring her character Mrs. Miniver. According to the story:

She saw every relationship as a pair of intersecting circles. It would seem at first glance that the more they overlapped the better the relationship; but this is not so. Beyond a certain point the law of diminishing returns sets in, and there are not enough private resources left on either side to enrich the life that is shared. Probably perfection is reached when the area of the two outer crescents, added together, is exactly equal to that of the leaf-shaped piece in the middle. On paper there must be some neat mathematical formula for arriving at this; in life, none. [2]

Louis A. Graham and Clifton Fadiman formalized the mathematics of the problem and popularized it among recreational mathematicians. [1] [3]

Solution

The problem can be solved by cutting the lune along the line segment between the two crossing points of the circles, into two circular segments, and using the formula for the area of a circular segment to relate the distance between the crossing points to the total area that the problem requires the lune to have. This gives a transcendental equation for the distance between crossing points but it can be solved numerically. [1] [4] There are two boundary conditions whose distances between centers can be readily solved: the farthest apart the centers can be is when the circles have equal radii, and the closest they can be is when one circle is contained completely within the other, which happens when the ratio between radii is . If the ratio of radii falls beyond these limiting cases, the circles cannot satisfy the problem's area constraint. [4]

In the case of two circles of equal size, these equations can be simplified somewhat. The rhombus formed by the two circle centers and the two crossing points, with side lengths equal to the radius, has an angle radians at the circle centers, found by solving the equation

from which it follows that the ratio of the distance between their centers to their radius is . [4]

See also

Related Research Articles

<span class="mw-page-title-main">Circle</span> Simple curve of Euclidean geometry

A circle is a shape consisting of all points in a plane that are at a given distance from a given point, the centre. Equivalently, it is the curve traced out by a point that moves in a plane so that its distance from a given point is constant. The distance between any point of the circle and the centre is called the radius. Usually, the radius is required to be a positive number. A circle with is a degenerate case. This article is about circles in Euclidean geometry, and, in particular, the Euclidean plane, except where otherwise noted.

In mathematics, an equation is a formula that expresses the equality of two expressions, by connecting them with the equals sign =. The word equation and its cognates in other languages may have subtly different meanings; for example, in French an équation is defined as containing one or more variables, while in English, any well-formed formula consisting of two expressions related with an equals sign is an equation.

<span class="mw-page-title-main">Kepler's laws of planetary motion</span> Laws describing the motion of planets

In astronomy, Kepler's laws of planetary motion, published by Johannes Kepler between 1609 and 1619, describe the orbits of planets around the Sun. The laws modified the heliocentric theory of Nicolaus Copernicus, replacing its circular orbits and epicycles with elliptical trajectories, and explaining how planetary velocities vary. The three laws state that:

  1. The orbit of a planet is an ellipse with the Sun at one of the two foci.
  2. A line segment joining a planet and the Sun sweeps out equal areas during equal intervals of time.
  3. The square of a planet's orbital period is proportional to the cube of the length of the semi-major axis of its orbit.

In algebra, a quadratic equation is any equation that can be rearranged in standard form as

<span class="mw-page-title-main">Sphere</span> Geometrical object that is the surface of a ball

A sphere is a geometrical object that is a three-dimensional analogue to a two-dimensional circle. Formally, a sphere is the set of points that are all at the same distance r from a given point in three-dimensional space. That given point is the centre of the sphere, and r is the sphere's radius. The earliest known mentions of spheres appear in the work of the ancient Greek mathematicians. A sphere is a degenerate case of a torus.

<span class="mw-page-title-main">Orbital mechanics</span> Field of classical mechanics concerned with the motion of spacecraft

Orbital mechanics or astrodynamics is the application of ballistics and celestial mechanics to the practical problems concerning the motion of rockets and other spacecraft. The motion of these objects is usually calculated from Newton's laws of motion and the law of universal gravitation. Orbital mechanics is a core discipline within space-mission design and control.

<span class="mw-page-title-main">Inscribed angle</span> Angle formed in the interior of a circle

In geometry, an inscribed angle is the angle formed in the interior of a circle when two chords intersect on the circle. It can also be defined as the angle subtended at a point on the circle by two given points on the circle.

<span class="mw-page-title-main">Cissoid of Diocles</span> Cubic plane curve

In geometry, the cissoid of Diocles is a cubic plane curve notable for the property that it can be used to construct two mean proportionals to a given ratio. In particular, it can be used to double a cube. It can be defined as the cissoid of a circle and a line tangent to it with respect to the point on the circle opposite to the point of tangency. In fact, the curve family of cissoids is named for this example and some authors refer to it simply as the cissoid. It has a single cusp at the pole, and is symmetric about the diameter of the circle which is the line of tangency of the cusp. The line is an asymptote. It is a member of the conchoid of de Sluze family of curves and in form it resembles a tractrix.

<span class="mw-page-title-main">Non-circular gear</span> Gear in a shape other than a circle

A non-circular gear (NCG) is a special gear design with special characteristics and purpose. While a regular gear is optimized to transmit torque to another engaged member with minimum noise and wear and with maximum efficiency, a non-circular gear's main objective might be ratio variations, axle displacement oscillations and more. Common applications include textile machines, potentiometers, CVTs, window shade panel drives, mechanical presses and high torque hydraulic engines.

<span class="mw-page-title-main">Circular sector</span> Portion of a disk enclosed by two radii and an arc

A circular sector, also known as circle sector or disk sector, is the portion of a disk enclosed by two radii and an arc, where the smaller area is known as the minor sector and the larger being the major sector. In the diagram, θ is the central angle, the radius of the circle, and is the arc length of the minor sector.

<span class="mw-page-title-main">Lens (geometry)</span> Convex plane region bounded by two circular arcs

In 2-dimensional geometry, a lens is a convex region bounded by two circular arcs joined to each other at their endpoints. In order for this shape to be convex, both arcs must bow outwards (convex-convex). This shape can be formed as the intersection of two circular disks. It can also be formed as the union of two circular segments, joined along a common chord.

<span class="mw-page-title-main">Problem of Apollonius</span> Construct circles that are tangent to three given circles in a plane

In Euclidean plane geometry, Apollonius's problem is to construct circles that are tangent to three given circles in a plane (Figure 1). Apollonius of Perga posed and solved this famous problem in his work Ἐπαφαί ; this work has been lost, but a 4th-century AD report of his results by Pappus of Alexandria has survived. Three given circles generically have eight different circles that are tangent to them (Figure 2), a pair of solutions for each way to divide the three given circles in two subsets.

<span class="mw-page-title-main">Circular arc</span> Part of a circle between two points

A circular arc is the arc of a circle between a pair of distinct points. If the two points are not directly opposite each other, one of these arcs, the minor arc, subtends an angle at the centre of the circle that is less than π radians ; and the other arc, the major arc, subtends an angle greater than π radians. The arc of a circle is defined as the part or segment of the circumference of a circle. A straight line that connects the two ends of the arc is known as a chord of a circle. If the length of an arc is exactly half of the circle, it is known as a semicircular arc.

In geometric probability, the problem of Buffon's noodle is a variation on the well-known problem of Buffon's needle, named after Georges-Louis Leclerc, Comte de Buffon who lived in the 18th century. This approach to the problem was published by Joseph-Émile Barbier in 1860.

The goat grazing problem is either of two related problems in recreational mathematics involving a tethered goat grazing a circular area: the interior grazing problem and the exterior grazing problem. The former involves grazing the interior of a circular area, and the latter, grazing an exterior of a circular area. For the exterior problem, the constraint that the rope can not enter the circular area dictates that the grazing area forms an involute. If the goat were instead tethered to a post on the edge of a circular path of pavement that did not obstruct the goat, the interior and exterior problem would be complements of a simple circular area.

<span class="mw-page-title-main">Kepler orbit</span> Celestial orbit whose trajectory is a conic section in the orbital plane

In celestial mechanics, a Kepler orbit is the motion of one body relative to another, as an ellipse, parabola, or hyperbola, which forms a two-dimensional orbital plane in three-dimensional space. A Kepler orbit can also form a straight line. It considers only the point-like gravitational attraction of two bodies, neglecting perturbations due to gravitational interactions with other objects, atmospheric drag, solar radiation pressure, a non-spherical central body, and so on. It is thus said to be a solution of a special case of the two-body problem, known as the Kepler problem. As a theory in classical mechanics, it also does not take into account the effects of general relativity. Keplerian orbits can be parametrized into six orbital elements in various ways.

<span class="mw-page-title-main">Steiner chain</span> Set of circles related by tangency

In geometry, a Steiner chain is a set of n circles, all of which are tangent to two given non-intersecting circles, where n is finite and each circle in the chain is tangent to the previous and next circles in the chain. In the usual closed Steiner chains, the first and last circles are also tangent to each other; by contrast, in open Steiner chains, they need not be. The given circles α and β do not intersect, but otherwise are unconstrained; the smaller circle may lie completely inside or outside of the larger circle. In these cases, the centers of Steiner-chain circles lie on an ellipse or a hyperbola, respectively.

In Euclidean plane geometry, a tangent line to a circle is a line that touches the circle at exactly one point, never entering the circle's interior. Tangent lines to circles form the subject of several theorems, and play an important role in many geometrical constructions and proofs. Since the tangent line to a circle at a point P is perpendicular to the radius to that point, theorems involving tangent lines often involve radial lines and orthogonal circles.

In mathematics, log-polar coordinates is a coordinate system in two dimensions, where a point is identified by two numbers, one for the logarithm of the distance to a certain point, and one for an angle. Log-polar coordinates are closely connected to polar coordinates, which are usually used to describe domains in the plane with some sort of rotational symmetry. In areas like harmonic and complex analysis, the log-polar coordinates are more canonical than polar coordinates.

In geometry, a circular triangle is a triangle with circular arc edges.

References

  1. 1 2 3 Graham, Louis A. (1959), "3: Mrs. Miniver's problem", Ingenious Mathematical Problems and Methods, Dover Books on Mathematics, Dover Publications, pp. 64–66, ISBN   978-0-486-28293-0
  2. Struther, Jan, "A Country House Visit", Mrs. Miniver, University of Pennsylvania, retrieved 2022-03-10. Originally published as part of a series of columns in The Times, 1937, and in the book Mrs. Miniver, Chatto and Windus, London, 1939.
  3. Fadiman, Clifton (1962), "The Miniver problem", The Mathematical Magpie, Simon & Schuster, pp. 298–300
  4. 1 2 3 Alsina, Claudi; Nelsen, Roger B. (2011), "11.8: Mrs. Miniver's problem", Icons of Mathematics: An Exploration of Twenty Key Images, Dolciani Mathematical Expositions, vol. 56, American Mathematical Society, pp. 141–142, ISBN   978-1-4704-5616-0