This article contains promotional content .(January 2022) |
Type | Autonomous Government Institute (Deemed University) |
---|---|
Established | 1997 |
President | Minister of Science and Technology, Government of India |
Director | Krishanu Ray |
Location | , , India |
Campus | Semi-Urban |
Website | www |
National Brain Research Centre is a research institute in Manesar, Gurugram, India. It is an autonomous institute under the Department of Biotechnology, Ministry of Science and Technology, Government of India. [1] The institute is dedicated to research in neuroscience and brain functions in health and diseases using multidisciplinary approaches. This is the first autonomous institute by DBT to be awarded by the Ministry of Education, Government of India, formerly known as the Ministry of Human Resource Development, in May 2002. NBRC (National Brain Research Centre) was dedicated to the nation by the Honorable President of India Dr. A.P.J. Abdul Kalam in December 2003. [2] The founder chairman of NBRC Society is Prof. Prakash Narain Tandon, whereas the founder director Prof. Vijayalakshmi Ravindranath was followed by Prof. Subrata Sinha and Prof. Neeraj Jain. The current director of NBRC is Prof. Krishanu Ray.
The National Brain Research Centre (NBRC) is India's only institute dedicated to neuroscience research and education. The institute's primary objectives are to understand brain functions in both healthy and diseased states, train human resources capable of conducting interdisciplinary research in neuroscience, and promote neuroscience in India by networking with national institutions. Scientists and students at NBRC come from diverse academic backgrounds, including biological, computational, mathematical, physical, engineering, and medical sciences.
On 5 October 1995, the proposal for founding NBRC was put forward. The creation was subsequently declared on 14 November 1997 as a part of the Golden Jubilee celebrations of India's Independence and the birth date of the former Prime Minister, Jawaharlal Nehru. [3] A Management Advisory Committee was further formed. In 2000, the institute commenced functioning as an autonomous institute of the Department of Biotechnology from its temporary location at International Centre for Genetic Engineering and Biotechnology, New Delhi. NBRC was awarded the status of Deemed University by Ministry of Education in 2002. On 16 December 2003, NBRC was moved to the foothills of the Aravalli Range in Manesar.
In the year 2006, National Neuroimaging facility was established that was fully equipped with state-of-the-art equipment, such as a 3 tesla magnetic resonance imaging scanner, electroencephalography, and evoked potential recording. In the following year, a Translational and Clinical Neuroscience Unit was formed along with a Neurology Outpatient Department to Civil Hospital, Gurgaon, to help common people and assess the occurrence of neurological cases in this region. Further, the Centre of Excellence for Epilepsy, jointly administered by NBRC and All India Institute of Medical Sciences, was established in 2005. Two major flagship programs by NBRC were initiated in the past few years. By 2017, National Dementia Program was initiated under NBRC's leadership, whereas by 2019, a flagship program entitled "Comparative mapping of common mental disorders (CMD) over the lifespan" was launched to understand the science of well-being.
NBRC has integrated multidisciplinary teaching programmes in Life Sciences, such as 2-year M.Sc. program in Neuroscience with broad overview of different aspects of Neuroscience. Eligibility criteria:
NBRC offers 5-year Ph.D. program in Neuroscience to students from diverse backgrounds who have a master's degree in any branch related to Neuroscience as mentioned below: Eligibility criteria:
NBRC conducts summer training programs wherein trainees attend seminars and journal clubs organized at the institute and get exposure to neuroscience.
Research faculty studies the complexities of brain functions and cognition in health and diseases. Research at NBRC is organized into five divisions: 1) Cellular neuroscience and Molecular neuroscience, 2) Systems neuroscience, 3) Cognitive neuroscience, 4) Computational neuroscience, and 5) Translational neuroscience. Nevertheless, faculty collaborates across divisions and other scientists. Research develops therapeutic tools and platforms to assess and cure brain disorders, including Alzheimer's disease, Parkinson's disease, dementia, Japanese encephalitis, Zika virus disease, NeuroAIDS, brain tumor, spinal cord injury, and stroke. The research focuses on detailed understanding of our senses of touch, hearing, speech learning, memory, and spatial navigation. Moreover, basic research helps plan clinical trials for the development of rational therapy for brain disorders. Researchers have also been studying the implications of SARS-CoV-2 on the brain.
Scientists have been studying the early biomarkers for AD using brain chemicals. Monitoring glutathione (GSH), an antioxidant molecule in the brain, aids in the early identification of AD and mapping out therapeutic invention. Scientists have demonstrated that hippocampus, frontal, and cingulate cortical regions responsible for memory and higher cognitive functions, respectively, show significant GSH depletion, leading to cognitive decline. [19] Using 31P MRS, scientists discovered that pH of the left hippocampal formation in AD shifts towards alkalinity. [20] Research has also demonstrated the existence of two open-and-closed conformations of GSH in healthy young participants. Presently, they are investigating the role of two GSH conformations and link between iron deposition and oxidative stress (OS) in the hippocampal formation in AD. [21] Although the exact cause of AD remains unknown, OS is considered a potential factor. Additionally, researchers at NBRC have proposed a novel prospective single-center parallel-arm double-blinded placebo-controlled phase III randomized trial using GSH as a dietary supplement for MCI patients, while monitoring brain GSH levels and cognitive profile using non-invasive MRS and neuropsychological testing, respectively.
Considering the elevating cases of depression, obsessive-compulsive disorder, anxiety, and post-traumatic stress disorder in patients with COVID-19, scientists have been mapping brains of patients who recovered from or were asymptomatic to COVID-19. This first global study analyzed structural, spectroscopic, and behavioral changes in the brains of recovered/asymptomatic patients using a novel non-invasive MRS neuroimaging technique. Findings suggest that glutamate and GABA levels are potential parameters to monitor mental health and psychiatric disease-associated conditions. Moreover, antioxidants and neurotransmitters in the study have potential implications for psychiatric disorders in COVID-19-affected patients. [22]
Scientists studied the specific role of the human thalamus as causal outflow hub in reorganizing directed information flow and connectivity among large-scale major neurocognitive networks during brain aging. This reorganization of directed functional connectivity with age during spontaneous activity highlights the importance of subcortical areas even during stimulus independent processing. Outcomes lead to understanding the crucial role of the thalamus as a major integrative hub in addition to insular network for mediating key cognitive functional dynamics and their role during maintenance of cognitive functions during healthy aging process in the human brain. [23]
In this collaborative study, it was discovered that dengue and JE viruses activate platelet inside host and induce them release platelet factor 4 (PF4). PF4 inhibits the activity of immune cells, thus stopping interferon production. PF4 acts through its receptor CXCR3, which when blocked with an antagonist AMG487 inhibits dengue and JE replication both in vivo and in vitro. This study indicates the possibility of developing an antiviral agent. [24]
This study focused on delineating molecular mechanisms, role of miRNAs, and involvement of ZV E protein in ZV-induced microcephaly. The protein promotes premature but faulty formation of neurons, which affects normal properties of brain stem cells. This is the potential reason behind ZV-induced small head size in infants. Nearly 25 miRNAs, regulating genes and protein expression in cells, were identified as important factors impacting the cell division, proliferation and stemness of the brain stem cells. [25]
This work on focused on the regeneration of nervous system, wherein lost neuronal function was found to be restored after injury in roundworm model. The findings established that the axon fusion process has functional significance in the maintenance of neuronal integrity throughout the life span of an organism. The researchers also demonstrated how to control this process genetically for treating nerve injuries in humans in future. [26]
An active ingredient Glycyrrhizin in Mulethi (liquorice)—a commonly used herb—is a potential source for the development of a drug against COVID-19. HMGB1 is crucial for regulating susceptibility to SARS-CoV-2, whereas S-receptor binding body (RBD) and Orf3a proteins are required for maximal SARS-CoV replication and virulence. The study investigated whether Glycyrrhizin affects SARS-CoV-2 S-RBD- and Orf3a-mediated HMGB1 release and cell death in lung cells expressing SARS-CoV-2 viral proteins. Glycyrrhizin did not only reverse S-RBD- and Orf3a-induced extracellular HMGB1 release but also abrogated caspase-1 activation and rescued cell death. Benefits of anti-inflammatory properties in glycyrrhizin are: 1) Lowering the severity of the disease, 2) Mitigating viral replication by as much as 90%, and 3) Fighting the "storm of cytokines". [27]
Vascular dementia is dementia caused by a series of strokes. Restricted blood flow due to strokes reduces oxygen and glucose delivery to the brain, causing cell injury and neurological deficits in the affected region. Subtypes of vascular dementia include subcortical vascular dementia, multi-infarct dementia, stroke-related dementia, and mixed dementia.
Cerebral atrophy is a common feature of many of the diseases that affect the brain. Atrophy of any tissue means a decrement in the size of the cell, which can be due to progressive loss of cytoplasmic proteins. In brain tissue, atrophy describes a loss of neurons and the connections between them. Brain atrophy can be classified into two main categories: generalized and focal atrophy. Generalized atrophy occurs across the entire brain whereas focal atrophy affects cells in a specific location. If the cerebral hemispheres are affected, conscious thought and voluntary processes may be impaired.
Kalirin, also known as Huntingtin-associated protein-interacting protein (HAPIP), protein duo (DUO), or serine/threonine-protein kinase with Dbl- and pleckstrin homology domain, is a protein that in humans is encoded by the KALRN gene. Kalirin was first identified in 1997 as a protein interacting with huntingtin-associated protein 1. Is also known to play an important role in nerve growth and axonal development.
Connectomics is the production and study of connectomes: comprehensive maps of connections within an organism's nervous system. More generally, it can be thought of as the study of neuronal wiring diagrams with a focus on how structural connectivity, individual synapses, cellular morphology, and cellular ultrastructure contribute to the make up of a network. The nervous system is a network made of billions of connections and these connections are responsible for our thoughts, emotions, actions, memories, function and dysfunction. Therefore, the study of connectomics aims to advance our understanding of mental health and cognition by understanding how cells in the nervous system are connected and communicate. Because these structures are extremely complex, methods within this field use a high-throughput application of functional and structural neural imaging, most commonly magnetic resonance imaging (MRI), electron microscopy, and histological techniques in order to increase the speed, efficiency, and resolution of these nervous system maps. To date, tens of large scale datasets have been collected spanning the nervous system including the various areas of cortex, cerebellum, the retina, the peripheral nervous system and neuromuscular junctions.
Alzheimer's disease (AD) is a neurodegenerative disease that usually starts slowly and progressively worsens, and is the cause of 60–70% of cases of dementia. The most common early symptom is difficulty in remembering recent events. As the disease advances, symptoms can include problems with language, disorientation, mood swings, loss of motivation, self-neglect, and behavioral issues. As a person's condition declines, they often withdraw from family and society. Gradually, bodily functions are lost, ultimately leading to death. Although the speed of progression can vary, the average life expectancy following diagnosis is three to twelve years.
Alzheimer's Disease Neuroimaging Initiative (ADNI) is a multisite study that aims to improve clinical trials for the prevention and treatment of Alzheimer's disease (AD). This cooperative study combines expertise and funding from the private and public sector to study subjects with AD, as well as those who may develop AD and controls with no signs of cognitive impairment. Researchers at 63 sites in the US and Canada track the progression of AD in the human brain with neuroimaging, biochemical, and genetic biological markers. This knowledge helps to find better clinical trials for the prevention and treatment of AD. ADNI has made a global impact, firstly by developing a set of standardized protocols to allow the comparison of results from multiple centers, and secondly by its data-sharing policy which makes available all at the data without embargo to qualified researchers worldwide. To date, over 1000 scientific publications have used ADNI data. A number of other initiatives related to AD and other diseases have been designed and implemented using ADNI as a model. ADNI has been running since 2004 and is currently funded until 2021.
The Human Connectome Project (HCP) is a five-year project sponsored by sixteen components of the National Institutes of Health, split between two consortia of research institutions. The project was launched in July 2009 as the first of three Grand Challenges of the NIH's Blueprint for Neuroscience Research. On September 15, 2010, the NIH announced that it would award two grants: $30 million over five years to a consortium led by Washington University in St. Louis and the University of Minnesota, with strong contributions from University of Oxford (FMRIB) and $8.5 million over three years to a consortium led by Harvard University, Massachusetts General Hospital and the University of California Los Angeles.
Anders Martin Dale is a prominent neuroscientist and professor of radiology, neurosciences, psychiatry, and cognitive science at the University of California, San Diego (UCSD), and is one of the world's leading developers of sophisticated computational neuroimaging techniques. He is the founding Director of the Center for Multimodal Imaging Genetics (CMIG) at UCSD.
A synaptopathy is a disease of the brain, spinal cord or peripheral nervous system relating to the dysfunction of synapses. This can arise as a result of a mutation in a gene encoding a synaptic protein such as an ion channel, neurotransmitter receptor, or a protein involved in neurotransmitter release. It can also arise as a result of an autoantibody targeting a synaptic protein. Synaptopathies caused by ion channel mutations are also known as synaptic channelopathies. An example is episodic ataxia. Myasthenia gravis is an example of an autoimmune synaptopathy. Some toxins also affect synaptic function. Tetanus toxin and botulinum toxin affect neurotransmitter release. Tetanus toxin can enter the body via a wound, and botulinum toxin can be ingested or administered therapeutically to alleviate dystonia or as cosmetic treatment.
Resting state fMRI is a method of functional magnetic resonance imaging (fMRI) that is used in brain mapping to evaluate regional interactions that occur in a resting or task-negative state, when an explicit task is not being performed. A number of resting-state brain networks have been identified, one of which is the default mode network. These brain networks are observed through changes in blood flow in the brain which creates what is referred to as a blood-oxygen-level dependent (BOLD) signal that can be measured using fMRI.
Translational neuroscience is the field of study which applies neuroscience research to translate or develop into clinical applications and novel therapies for nervous system disorders. The field encompasses areas such as deep brain stimulation, brain machine interfaces, neurorehabilitation and the development of devices for the sensory nervous system such as the use of auditory implants, retinal implants, and electronic skins.
The Rush Alzheimer's Disease Center (RADC) is an independent research center located in the Medical College of Rush University Medical Center. The Rush Alzheimer's Disease Center is one of the Alzheimer's Disease Research Centers in the U.S. designated and funded by the National Institute on Aging.
The neuroscience of aging is the study of the changes in the nervous system that occur with ageing. Aging is associated with many changes in the central nervous system, such as mild atrophy of the cortex that is considered non-pathological. Aging is also associated with many neurological and neurodegenerative disease such as amyotrophic lateral sclerosis, dementia, mild cognitive impairment, Parkinson's disease, and Creutzfeldt–Jakob disease.
Elaine L. Bearer is an American neuroscientist, pathologist, and composer.
Nihar Ranjan Jana is an Indian neuroscientist and professor at the IIT Kharagpur, known for his studies on E3 ubiquitin ligases, protein homeostasis and neurodegenerative disorders. Jana is an elected fellow of the National Academy of Sciences, India. The Department of Biotechnology of the Government of India awarded him the National Bioscience Award for Career Development, in 2008 and TATA Innovation Fellowship in 2014 for his contributions to Neurodegenerative diseases.
LATE is a term that describes a prevalent medical condition with impaired memory and thinking in advanced age, often culminating in the dementia clinical syndrome. In other words, the symptoms of LATE are similar to those of Alzheimer's disease.
Heather Clare Whalley is a Scottish scientist. She is a Professor of Neuroscience and Mental Health neuroimaging at the Centre for Clinical Brain Sciences, University of Edinburgh, and is an affiliate member of the Centre for Genomic and Experimental Medicine at the University of Edinburgh. Her main focus of research is on the mechanisms underlying the development of major psychiatric disorders using the latest genomic and neuroimaging approaches.
Aloxistatin is a drug which acts as a cysteine protease inhibitor and has anticoagulant effects. It is a synthetic analogue of E-64, a natural product derived from fungi. It was researched for the treatment of muscular dystrophy but was not successful in human clinical trials, though it has continued to be investigated for treatment of spinal cord injury, stroke and Alzheimer's disease.
The neurovascular unit (NVU) comprises the components of the brain that collectively regulate cerebral blood flow in order to deliver the requisite nutrients to activated neurons. The NVU addresses the brain's unique dilemma of having high energy demands yet low energy storage capacity. In order to function properly, the brain must receive substrates for energy metabolism–mainly glucose–in specific areas, quantities, and times. Neurons do not have the same ability as, for example, muscle cells, which can use up their energy reserves and refill them later; therefore, cerebral metabolism must be driven in the moment. The neurovascular unit facilitates this ad hoc delivery and, thus, ensures that neuronal activity can continue seamlessly.
{{cite web}}
: CS1 maint: DOI inactive as of November 2024 (link){{cite web}}
: CS1 maint: DOI inactive as of November 2024 (link){{cite web}}
: CS1 maint: DOI inactive as of November 2024 (link)