Nelson Max

Last updated
Nelson Max
Nationality American
Scientific career
Fields Computer science

Nelson Max is a professor [1] of computer science at the University of California at Davis. He received his Ph.D. in Mathematics from Harvard University in 1967, advised by Herman Gluck. [2] His research interests include scientific visualization, computer animation, photorealistic computer graphics rendering, multi-view stereo reconstruction, and augmented reality. In his visualization section, he worked on molecular graphics, and volume and flow visualization, particularly on irregular finite element meshes. He has rendered realistic lighting effects in clouds, trees, and water waves, and has produced numerous computer animations, shown at the annual ACM SIGGRAPH conferences, and in OMNIMAX stereo at the Fujitsu Pavilions at Expo ’85 in Tsukuba Japan, and at Expo ’90 in Osaka Japan. He received the prestigious Steven A. Coons Award in 2007, [3] and is a Fellow of the ACM and a member of the ACM SIGGRAPH Academy.

His computer animation in the early 1970s for the Topology Films Project included the award winning animated films "Space Filling Curves," [4] showing continuous fractal curves that pass through every point in a square, and "Turning a Sphere Inside Out," [5] showing how to turn a sphere inside out without tearing or creasing the surface, but allowing the surface to cross itself. In photorealistic rendering, he was the first to render beams of light and shadow from atmospheric scattering, [6] and developed horizon mapping to render bump shadows on bump-mapped surfaces. [7] At Lawrence Livermore National Laboratory in 1981, he produced the film "Carla's Island" [8] showing reflections of the sunset on ocean waves, using vectorized ray tracing on the Cray 1 supercomputer.

Related Research Articles

<span class="mw-page-title-main">Rendering (computer graphics)</span> Process of generating an image from a model

Rendering or image synthesis is the process of generating a photorealistic or non-photorealistic image from a 2D or 3D model by means of a computer program. The resulting image is referred to as the render. Multiple models can be defined in a scene file containing objects in a strictly defined language or data structure. The scene file contains geometry, viewpoint, textures, lighting, and shading information describing the virtual scene. The data contained in the scene file is then passed to a rendering program to be processed and output to a digital image or raster graphics image file. The term "rendering" is analogous to the concept of an artist's impression of a scene. The term "rendering" is also used to describe the process of calculating effects in a video editing program to produce the final video output.

<span class="mw-page-title-main">Bump mapping</span> Texturing technique for bumps/wrinkles in computer graphics

Bump mapping is a texture mapping technique in computer graphics for simulating bumps and wrinkles on the surface of an object. This is achieved by perturbing the surface normals of the object and using the perturbed normal during lighting calculations. The result is an apparently bumpy surface rather than a smooth surface, although the surface of the underlying object is not changed. Bump mapping was introduced by James Blinn in 1978.

<span class="mw-page-title-main">Utah teapot</span> Computer graphics 3D reference and test model

The Utah teapot, or the Newell teapot, is a 3D test model that has become a standard reference object and an in-joke within the computer graphics community. It is a mathematical model of an ordinary Melitta-brand teapot that appears solid with a nearly rotationally symmetrical body. Using a teapot model is considered the 3D equivalent of a "Hello, World!" program, a way to create an easy 3D scene with a somewhat complex model acting as the basic geometry for a scene with a light setup. Some programming libraries, such as the OpenGL Utility Toolkit, even have functions dedicated to drawing teapots.

Autodesk 3ds Max, formerly 3D Studio and 3D Studio Max, is a professional 3D computer graphics program for making 3D animations, models, games and images. It is developed and produced by Autodesk Media and Entertainment. It has modeling capabilities and a flexible plugin architecture and must be used on the Microsoft Windows platform. It is frequently used by video game developers, many TV commercial studios, and architectural visualization studios. It is also used for movie effects and movie pre-visualization. 3ds Max features shaders, dynamic simulation, particle systems, radiosity, normal map creation and rendering, global illumination, a customizable user interface, and its own scripting language.

<span class="mw-page-title-main">Scientific visualization</span> Interdisciplinary branch of science concerned with presenting scientific data visually

Scientific visualization is an interdisciplinary branch of science concerned with the visualization of scientific phenomena. It is also considered a subset of computer graphics, a branch of computer science. The purpose of scientific visualization is to graphically illustrate scientific data to enable scientists to understand, illustrate, and glean insight from their data. Research into how people read and misread various types of visualizations is helping to determine what types and features of visualizations are most understandable and effective in conveying information.

<span class="mw-page-title-main">Volume rendering</span> Representing a 3D-modeled object or dataset as a 2D projection

In scientific visualization and computer graphics, volume rendering is a set of techniques used to display a 2D projection of a 3D discretely sampled data set, typically a 3D scalar field.

<span class="mw-page-title-main">Lance Williams (graphics researcher)</span> American graphics researcher

Lance J. Williams was a prominent graphics researcher who made major contributions to texture map prefiltering, shadow rendering algorithms, facial animation, and antialiasing techniques. Williams was one of the first people to recognize the potential of computer graphics to transform film and video making.

<span class="mw-page-title-main">Non-photorealistic rendering</span> Style of rendering

Non-photorealistic rendering (NPR) is an area of computer graphics that focuses on enabling a wide variety of expressive styles for digital art, in contrast to traditional computer graphics, which focuses on photorealism. NPR is inspired by other artistic modes such as painting, drawing, technical illustration, and animated cartoons. NPR has appeared in movies and video games in the form of cel-shaded animation as well as in scientific visualization, architectural illustration and experimental animation.

<span class="mw-page-title-main">Jim Blinn</span> American computer scientist

James F. Blinn is an American computer scientist who first became widely known for his work as a computer graphics expert at NASA's Jet Propulsion Laboratory (JPL), particularly his work on the pre-encounter animations for the Voyager project, his work on the 1980 Carl Sagan documentary series Cosmos, and the research of the Blinn–Phong shading model.

<span class="mw-page-title-main">3D rendering</span> Process of converting 3D scenes into 2D images

3D rendering is the 3D computer graphics process of converting 3D models into 2D images on a computer. 3D renders may include photorealistic effects or non-photorealistic styles.

Form·Z is a general-purpose solid and surface modeling software. It offers 2D/3D form manipulating and sculpting capabilities. It can be used on Windows and Macintosh computers. It is available in English, German, Italian, Spanish, French, Greek, Korean and Japanese languages.

<span class="mw-page-title-main">Pat Hanrahan</span> American computer graphics researcher

Patrick M. Hanrahan is an American computer graphics researcher, the Canon USA Professor of Computer Science and Electrical Engineering in the Computer Graphics Laboratory at Stanford University. His research focuses on rendering algorithms, graphics processing units, as well as scientific illustration and visualization. He has received numerous awards, including the 2019 Turing Award.

<span class="mw-page-title-main">Tomoyuki Nishita</span>

Tomoyuki Nishita is a professor at the University of Tokyo. Dr. Nishita received a research award for computer graphics from the Information Processing Society of Japan in 1987, and also received the Steven Anson Coons Award from the ACM SIGGRAPH in 2005.

<span class="mw-page-title-main">3D computer graphics</span> Graphics that use a three-dimensional representation of geometric data

3D computer graphics, sometimes called CGI, 3-D-CGI or three-dimensional computer graphics, are graphics that use a three-dimensional representation of geometric data that is stored in the computer for the purposes of performing calculations and rendering digital images, usually 2D images but sometimes 3D images. The resulting images may be stored for viewing later or displayed in real time.

<span class="mw-page-title-main">Computer graphics (computer science)</span> Sub-field of computer science

Computer graphics is a sub-field of computer science which studies methods for digitally synthesizing and manipulating visual content. Although the term often refers to the study of three-dimensional computer graphics, it also encompasses two-dimensional graphics and image processing.

<span class="mw-page-title-main">Computer graphics</span> Graphics created using computers

Computer graphics deals with generating images and art with the aid of computers. Today, computer graphics is a core technology in digital photography, film, video games, digital art, cell phone and computer displays, and many specialized applications. A great deal of specialized hardware and software has been developed, with the displays of most devices being driven by computer graphics hardware. It is a vast and recently developed area of computer science. The phrase was coined in 1960 by computer graphics researchers Verne Hudson and William Fetter of Boeing. It is often abbreviated as CG, or typically in the context of film as computer generated imagery (CGI). The non-artistic aspects of computer graphics are the subject of computer science research.

<span class="mw-page-title-main">3D modeling</span> Form of computer-aided engineering

In 3D computer graphics, 3D modeling is the process of developing a mathematical coordinate-based representation of a surface of an object in three dimensions via specialized software by manipulating edges, vertices, and polygons in a simulated 3D space.

Arnold is a computer program for rendering three-dimensional, computer-generated scenes using unbiased, physically-based, Monte Carlo path tracing techniques. Created in Spain by Marcos Fajardo and later co-developed by his company Solid Angle SL and Sony Pictures Imageworks, Arnold is one of the most widely used photorealistic rendering systems in computer graphics worldwide, particularly in animation and VFX for film and TV. Notable feature films that have used Arnold include Monster House, Cloudy with a Chance of Meatballs, Alice in Wonderland, Thor, Captain America, X-Men: First Class, The Avengers, Space Pirate Captain Harlock, Elysium, Pacific Rim, Gravity, Guardians of the Galaxy, Star Wars: The Force Awakens, Arrival and Blade Runner 2049. Notable television series include Game of Thrones, Westworld, Trollhunters, LOVE DEATH + ROBOTS, Jelly Jamm and The Mandalorian.

<span class="mw-page-title-main">Gooch shading</span> Non-photorealistic rendering technique

Gooch shading is a non-photorealistic rendering technique for shading objects. It is also known as "cool to warm" shading, and is widely used in technical illustration.

<span class="mw-page-title-main">Michael F. Cohen</span> American computer scientist

Michael F. Cohen is an American computer scientist and researcher in computer graphics. He is currently a Senior Fellow at Meta in their Generative AI Group. He was a senior research scientist at Microsoft Research for 21 years until he joined Facebook in 2015. In 1998, he received the ACM SIGGRAPH CG Achievement Award for his work in developing radiosity methods for realistic image synthesis. He was elected a Fellow of the Association for Computing Machinery in 2007 for his "contributions to computer graphics and computer vision." In 2019, he received the ACM SIGGRAPH Steven A. Coons Award for Outstanding Creative Contributions to Computer Graphics for “his groundbreaking work in numerous areas of research—radiosity, motion simulation & editing, light field rendering, matting & compositing, and computational photography”.

References

  1. "Webpage for Nelson Max".
  2. "Nelson Max - The Mathematics Genealogy Project".
  3. "2007 Steven A. Coons Award: Nelson Max".
  4. "Video on Space Filling Curves". YouTube .
  5. "Video on Turning a Sphere Inside Out".
  6. Max, Nelson L. (31 August 1986). "Atmospheric illumination and shadows". ACM SIGGRAPH Computer Graphics. 20 (4): 117–124. doi:10.1145/15886.15899.
  7. "The Visual Computer 1988: Horizon mapping: shadows for bump-mapped surfaces". doi:10.1007/BF01905562. S2CID   24001690.{{cite journal}}: Cite journal requires |journal= (help)
  8. "Carla's Island". YouTube .