Nix (gene)

Last updated

Nix is a pro-apoptotic gene that is regulated by Histotoxic hypoxia. It expresses a signaling protein related to the BH3-only family. This protein induces autophagy, an intracellular function by which cytoplasmic components are delivered to the lysosome to be broken down and used elsewhere or excreted from the cell. [1] This protein is important in development because it allows cells to have a consistent store of cellular components. [2] It also holds an important role in the differentiation and maturation of erythrocytes and lymphocytes by the process of mitophagy with the help of its regulator BNIP3. [3] Using a gene knockout technique in mice, scientists have been able to attribute this pruning of mitochondria and induction of cellular necrosis to the expression of the Nix gene. [1] The Nix protein may be associated with certain kinds of cancer formation. In mouse models, loss of Nix resulted in a delayed onset of tumors for pancreatic cancer, and was additionally associated with reduced mitophagy and increased oxidative metabolism. Nix therefore may be a tumor promoter for pancreatic cancer. [4]

Not only does it hold a role in the differentiation of these immune and oxygen-carrying cells, but it also affects the development and maintenance of heart tissue. It has been found to be a cause of pathologic hypertrophy and cardiomyocyte apoptosis involved in congenital heart disease. [5] The effects of Nix are amplified in the neonatal heart compared to the adult heart. Overexpression of Nix in the fetal mouse has been found to cause severe growth retardation and massive cardiomyocyte apoptosis often followed by lethality. These early interactions between the fetal heart and Nix expression are thought to have a role in the development of adult heart disease. [3]

Related Research Articles

Autophagy Cellular catabolic process in which cells digest parts of their own cytoplasm

Autophagy is the natural, regulated mechanism of the cell that removes unnecessary or disfunctional components. It allows the orderly degradation and recycling of cellular components.

Reactive oxygen species Class of compounds

Reactive oxygen species (ROS) are chemically reactive chemical species containing oxygen. Examples include peroxides, superoxide, hydroxyl radical, singlet oxygen, and alpha-oxygen.

Myostatin mammalian protein found in Homo sapiens

Myostatin is a myokine, a protein produced and released by myocytes that acts on muscle cells' autocrine function to inhibit myogenesis: muscle cell growth and differentiation. In humans it is encoded by the MSTN gene. Myostatin is a secreted growth differentiation factor that is a member of the TGF beta protein family.

Jun dimerization protein protein-coding gene in the species Homo sapiens

Jun dimerization protein 2 (JUNDM2) is a protein that in humans is encoded by the JDP2 gene. The Jun dimerization protein is a member of the AP-1 family of transcription factors.

mir-1 microRNA precursor family

The miR-1 microRNA precursor is a small micro RNA that regulates its target protein's expression in the cell. microRNAs are transcribed as ~70 nucleotide precursors and subsequently processed by the Dicer enzyme to give products at ~22 nucleotides. In this case the mature sequence comes from the 3' arm of the precursor. The mature products are thought to have regulatory roles through complementarity to mRNA. In humans there are two distinct microRNAs that share an identical mature sequence, these are called miR-1-1 and miR-1-2.

MFN2 protein-coding gene in the species Homo sapiens

Mitofusin-2 is a protein that in humans is encoded by the MFN2 gene. Mitofusins are GTPases embedded in the outer membrane of the mitochondria. In mammals MFN1 and MFN2 are essential for mitochondrial fusion. In addition to the mitofusins, OPA1 regulates inner mitochondrial membrane fusion, and DRP1 is responsible for mitochondrial fission.

PRKCE protein-coding gene in the species Homo sapiens

Protein kinase C epsilon type (PKCε) is an enzyme that in humans is encoded by the PRKCE gene. PKCε is an isoform of the large PKC family of protein kinases that play many roles in different tissues. In cardiac muscle cells, PKCε regulates muscle contraction through its actions at sarcomeric proteins, and PKCε modulates cardiac cell metabolism through its actions at mitochondria. PKCε is clinically significant in that it is a central player in cardioprotection against ischemic injury and in the development of cardiac hypertrophy.

BCL2-like 1 protein-coding gene in the species Homo sapiens

Bcl-2-like 1 or BCL2L1 is a human gene. Through alternative splicing, it encodes both of the human proteins Bcl-xL and Bcl-xS.

CDH2 protein-coding gene in the species Homo sapiens

N-cadherin, also known as Cadherin-2 (CDH2) or neural cadherin (NCAD) is a protein that in humans is encoded by the CDH2 gene. CDH2 has also been designated as CD325. N-cadherin is a transmembrane protein expressed in multiple tissues and functions to mediate cell–cell adhesion. In cardiac muscle, N-cadherin is an integral component in adherens junctions residing at intercalated discs, which function to mechanically and electrically couple adjacent cardiomyocytes. While mutations in CDH2 have not thus far been associated with human disease, alterations in expression and integrity of N-cadherin protein has been observed in various forms of disease, including human dilated cardiomyopathy.

GATA4 protein-coding gene in the species Homo sapiens

Transcription factor GATA-4 is a protein that in humans is encoded by the GATA4 gene.

BNIP3 protein-coding gene in the species Homo sapiens

BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 is a protein that in humans is encoded by the BNIP3 gene.

BNIP3L protein-coding gene in the species Homo sapiens

BCL2/adenovirus E1B 19 kDa protein-interacting protein 3-like is a protein that in humans is encoded by the BNIP3L gene.

ENDOG protein-coding gene in the species Homo sapiens

Endonuclease G, mitochondrial is an enzyme that in humans is encoded by the ENDOG gene. This protein primarily participates in caspase-independent apoptosis via DNA degradation when translocating from the mitochondrion to nucleus under oxidative stress. As a result, EndoG has been implicated in cancer, aging, and neurodegenerative diseases such as Parkinson’s disease (PD). Regulation of its expression levels thus holds potential to treat or ameliorate those conditions.

ADP/ATP translocase 4 protein-coding gene in the species Homo sapiens

ADP/ATP translocase 4 (ANT4) is an enzyme that in humans is encoded by the SLC25A31 gene on chromosome 4. This enzyme inhibits apoptosis by catalyzing ADP/ATP exchange across the mitochondrial membranes and regulating membrane potential. In particular, ANT4 is essential to spermatogenesis, as it imports ATP into sperm mitochondria to support their development and survival. Outside this role, the SLC25AC31 gene has not been implicated in any human disease.

VDAC2 protein-coding gene in the species Homo sapiens

Voltage-dependent anion-selective channel protein 2 is a protein that in humans is encoded by the VDAC2 gene on chromosome 10. This protein is a voltage-dependent anion channel and shares high structural homology with the other VDAC isoforms. VDACs are generally involved in the regulation of cell metabolism, mitochondrial apoptosis, and spermatogenesis. Additionally, VDAC2 participates in cardiac contractions and pulmonary circulation, which implicate it in cardiopulmonary diseases. VDAC2 also mediates immune response to infectious bursal disease (IBD).

VDAC3 protein-coding gene in the species Homo sapiens

Voltage-dependent anion-selective channel protein 3 (VDAC3) is a protein that in humans is encoded by the VDAC3 gene on chromosome 8. The protein encoded by this gene is a voltage-dependent anion channel and shares high structural homology with the other VDAC isoforms. Nonetheless, VDAC3 demonstrates limited pore-forming ability and, instead, interacts with other proteins to perform its biological functions, including sperm flagella assembly and centriole assembly. Mutations in VDAC3 have been linked to male infertility, as well as Parkinson’s disease.

Mitophagy is the selective degradation of mitochondria by autophagy. It often occurs to defective mitochondria following damage or stress. The process of mitophagy was first described over a hundred years ago by Margaret Reed Lewis and Warren Harmon Lewis. Ashford and Porter used electron microscopy to observe mitochondrial fragments in liver lysosomes by 1962, and a 1977 report suggested that "mitochondria develop functional alterations which would activate autophagy." The term "mitophagy" was in use by 1998.

mir-210 microRNA

In molecular biology mir-210 microRNA is a short RNA molecule. MicroRNAs function to regulate the expression levels of other genes by several mechanisms.

ADP/ATP translocase 2 protein-coding gene in the species Homo sapiens

ADP/ATP translocase 2 is a protein that in humans is encoded by the SLC25A5 gene on the X chromosome.

ATG4D protein-coding gene in the species Homo sapiens

The human ATG4D gene encodes the protein Autophagy related 4D, cysteine peptidase.

References

  1. 1 2 Zhang J, Ney PA (July 2009). "Role of BNIP3 and NIX in cell death, autophagy, and mitophagy". Cell Death and Differentiation. 16 (7): 939–46. doi:10.1038/cdd.2009.16. PMC   2768230 . PMID   19229244.
  2. Mizushima N, Levine B (September 2010). "Autophagy in mammalian development and differentiation". Nature Cell Biology. 12 (9): 823–30. doi:10.1038/ncb0910-823. PMC   3127249 . PMID   20811354.
  3. 1 2 Dorn GW (August 2010). "Mitochondrial pruning by Nix and BNip3: an essential function for cardiac-expressed death factors". Journal of Cardiovascular Translational Research. 3 (4): 374–83. doi:10.1007/s12265-010-9174-x. PMC   2900478 . PMID   20559783.
  4. MacLeod, Kay F. (2020). "Mitophagy and Mitochondrial Dysfunction in Cancer". Annual Review of Cancer Biology. 4: 41–60. doi: 10.1146/annurev-cancerbio-030419-033405 .
  5. Dorn GW (July 2005). "Physiologic growth and pathologic genes in cardiac development and cardiomyopathy". Trends in Cardiovascular Medicine. 15 (5): 185–9. doi:10.1016/j.tcm.2005.05.009. PMID   16165015.