Nuclear attribution

Last updated

Nuclear attribution is the process of tracing the origin of nuclear material that has been used in a nuclear explosion. [1] The problem is not necessarily a straightforward one, for it may be possible to obtain nuclear precursors through the black market, and therefore relatively anonymously. Attribution to the source is desirable due to the trend of nuclear proliferation. Nuclear capability has expanded from only a couple of states, to where a terrorist group could make a bomb with only partial state backing. The United States has demonstrated its interest in nuclear attribution by passing the Nuclear Forensics and Attribution Act, which calls for the development of attribution capabilities. [2]

Contents

Nuclear Forensics

A primary method used in nuclear attribution is nuclear forensics. The first step in this process is field work. Radiation levels can be quickly determined in the field using dosimetry. Reports from local survivors help provide visual evidence. The early data from the field, in addition to seismic data, can be used to establish that the bomb was actually nuclear and estimate its yield. The gathered samples will be shipped to laboratories and analyzed using isotope analysis and other methods. The isotopic signature can then be compared with known isotopic data and the likely history of the nuclear material can be pieced together.

Intelligence

Another aspect of nuclear attribution is the use of law enforcement and intelligence. This involves the monitoring of lost nuclear material, as well as known or suspected enrichment facilities. The latter is often done with satellite imagery. This data can be compared with the forensic evidence to increase the probability of accuracy.

Problems

The goal of nuclear attribution is to pinpoint the source of nuclear material with a credible level of accuracy. This faces a number of practical difficulties. First is that the lab work relies on comparing gathered samples to samples that have already been analyzed. Until there is significant international cooperation to develop a database, it will be difficult to specifically determine the source of the nuclear material. [3] Analysis may consist more of places that are likely not to be the source, than specifically where it is from. This will reduce its usefulness to political leaders who have to make quick decisions. Collecting the samples themselves will be difficult in the event of a nuclear explosion. The local infrastructure will likely be overwhelmed and may not be able to respondly quickly enough to gather fresh data. The environment will likely also be highly radioactive, especially if a dirty bomb is used. Getting trained humans on site could be prohibitively difficult. Another problem is that the process of nuclear attribution takes time. Political pressure could dictate a response from leaders far before the months it may take to conduct a full analysis of the source material. [4]

See also

Related Research Articles

<span class="mw-page-title-main">Fermium</span> Chemical element, symbol Fm and atomic number 100

Fermium is a synthetic chemical element; it has symbol Fm and atomic number 100. It is an actinide and the heaviest element that can be formed by neutron bombardment of lighter elements, and hence the last element that can be prepared in macroscopic quantities, although pure fermium metal has not yet been prepared. A total of 20 isotopes are known, with 257Fm being the longest-lived with a half-life of 100.5 days.

<span class="mw-page-title-main">Neutron activation analysis</span>

Neutron activation analysis (NAA) is a nuclear process used for determining the concentrations of elements in many materials. NAA allows discrete sampling of elements as it disregards the chemical form of a sample, and focuses solely on atomic nuclei. The method is based on neutron activation and thus requires a neutron source. The sample is bombarded with neutrons, causing its constituent elements to form radioactive isotopes. The radioactive emissions and radioactive decay paths for each element have long been studied and determined. Using this information, it is possible to study spectra of the emissions of the radioactive sample, and determine the concentrations of the various elements within it. A particular advantage of this technique is that it does not destroy the sample, and thus has been used for the analysis of works of art and historical artifacts. NAA can also be used to determine the activity of a radioactive sample.

<span class="mw-page-title-main">Bomb</span> Explosive weapon that uses exothermic reaction

A bomb is an explosive weapon that uses the exothermic reaction of an explosive material to provide an extremely sudden and violent release of energy. Detonations inflict damage principally through ground- and atmosphere-transmitted mechanical stress, the impact and penetration of pressure-driven projectiles, pressure damage, and explosion-generated effects. Bombs have been utilized since the 11th century starting in East Asia.

<span class="mw-page-title-main">Inductively coupled plasma mass spectrometry</span> Type of mass spectrometry that uses an inductively coupled plasma to ionize the sample

Inductively coupled plasma mass spectrometry (ICP-MS) is a type of mass spectrometry that uses an inductively coupled plasma to ionize the sample. It atomizes the sample and creates atomic and small polyatomic ions, which are then detected. It is known and used for its ability to detect metals and several non-metals in liquid samples at very low concentrations. It can detect different isotopes of the same element, which makes it a versatile tool in isotopic labeling.

A dirty bomb or radiological dispersal device is a radiological weapon that combines radioactive material with conventional explosives. The purpose of the weapon is to contaminate the area around the dispersal agent/conventional explosion with radioactive material, serving primarily as an area denial device against civilians. It is not to be confused with a nuclear explosion, such as a fission bomb, which produces blast effects far in excess of what is achievable by the use of conventional explosives. Unlike the cloud of radiation from a typical fission bomb, a dirty bomb's radiation can be dispersed only within a few hundred meters or a few miles of the explosion.

<span class="mw-page-title-main">Nuclear technology</span> Technology that involves the reactions of atomic nuclei

Nuclear technology is technology that involves the nuclear reactions of atomic nuclei. Among the notable nuclear technologies are nuclear reactors, nuclear medicine and nuclear weapons. It is also used, among other things, in smoke detectors and gun sights.

<span class="mw-page-title-main">Isotope analysis</span> Analytical technique used to study isotopes

Isotope analysis is the identification of isotopic signature, abundance of certain stable isotopes of chemical elements within organic and inorganic compounds. Isotopic analysis can be used to understand the flow of energy through a food web, to reconstruct past environmental and climatic conditions, to investigate human and animal diets, for food authentification, and a variety of other physical, geological, palaeontological and chemical processes. Stable isotope ratios are measured using mass spectrometry, which separates the different isotopes of an element on the basis of their mass-to-charge ratio.

<span class="mw-page-title-main">Radiological warfare</span> Attacks using radioactive material with intent of contamination of an area

Radiological warfare is any form of warfare involving deliberate radiation poisoning or contamination of an area with radiological sources.

<span class="mw-page-title-main">Trinitite</span> Glassy mineral left in the dirt after the plutonium-based Trinity bomb test

Trinitite, also known as atomsite or Alamogordo glass, is the glassy residue left on the desert floor after the plutonium-based Trinity nuclear bomb test on July 16, 1945, near Alamogordo, New Mexico. The glass is primarily composed of arkosic sand composed of quartz grains and feldspar that was melted by the atomic blast. It was first academically described in American Mineralogist in 1948.

<span class="mw-page-title-main">Red mercury</span> Alleged chemical substance

Red mercury is a discredited substance, most likely a hoax perpetrated by con artists who sought to take advantage of gullible buyers on the black market for arms. These con artists described it as a substance used in the creation of nuclear weapons; because of the secrecy surrounding nuclear weapons development, it is difficult to disprove their claims completely. However, all samples of alleged "red mercury" analyzed in the public literature have proven to be well-known, common substances of no interest to weapons makers.

<span class="mw-page-title-main">Neutron activation</span> Induction of radioactivity by neutron radiation

Neutron activation is the process in which neutron radiation induces radioactivity in materials, and occurs when atomic nuclei capture free neutrons, becoming heavier and entering excited states. The excited nucleus decays immediately by emitting gamma rays, or particles such as beta particles, alpha particles, fission products, and neutrons. Thus, the process of neutron capture, even after any intermediate decay, often results in the formation of an unstable activation product. Such radioactive nuclei can exhibit half-lives ranging from small fractions of a second to many years.

Forensic identification is the application of forensic science, or "forensics", and technology to identify specific objects from the trace evidence they leave, often at a crime scene or the scene of an accident. Forensic means "for the courts".

<span class="mw-page-title-main">Forensic chemistry</span> Forensic application of the study of chemistry

Forensic chemistry is the application of chemistry and its subfield, forensic toxicology, in a legal setting. A forensic chemist can assist in the identification of unknown materials found at a crime scene. Specialists in this field have a wide array of methods and instruments to help identify unknown substances. These include high-performance liquid chromatography, gas chromatography-mass spectrometry, atomic absorption spectroscopy, Fourier transform infrared spectroscopy, and thin layer chromatography. The range of different methods is important due to the destructive nature of some instruments and the number of possible unknown substances that can be found at a scene. Forensic chemists prefer using nondestructive methods first, to preserve evidence and to determine which destructive methods will produce the best results.

<span class="mw-page-title-main">Isotope-ratio mass spectrometry</span>

Isotope-ratio mass spectrometry (IRMS) is a specialization of mass spectrometry, in which mass spectrometric methods are used to measure the relative abundance of isotopes in a given sample.

<span class="mw-page-title-main">Forensic biology</span> Forensic application of the study of biology

Forensic biology is the use of biological principles and techniques in the context of law enforcement investigations.

<span class="mw-page-title-main">Forensic geology</span>

Forensic geology is the study of evidence relating to materials found in the Earth used to answer questions raised by the legal system.

Nuclear MASINT is one of the six major subdisciplines generally accepted to make up Measurement and Signature Intelligence (MASINT), which covers measurement and characterization of information derived from nuclear radiation and other physical phenomena associated with nuclear weapons, reactors, processes, materials, devices, and facilities. Nuclear monitoring can be done remotely or during onsite inspections of nuclear facilities. Data exploitation results in characterization of nuclear weapons, reactors, and materials. A number of systems detect and monitor the world for nuclear explosions, as well as nuclear materials production.

Radioanalytical chemistry focuses on the analysis of sample for their radionuclide content. Various methods are employed to purify and identify the radioelement of interest through chemical methods and sample measurement techniques.

Forensic seismology is the forensic use of the techniques of seismology to detect and study distant phenomena, particularly explosions, including those of nuclear weapons.

Nuclear forensics is the investigation of nuclear materials to find evidence for the source, the trafficking, and the enrichment of the material. The material can be recovered from various sources including dust from the vicinity of a nuclear facility, or from the radioactive debris following a nuclear explosion.

References

  1. David Sanger and Thom Shanker (7 May 2007). "U.S. Debates Deterrence for Nuclear Terrorism". New York Times . Retrieved 2008-04-29.
  2. "H.R.730". The Library of Congress. Retrieved 21 August 2011.[ permanent dead link ]
  3. Begley, Sharon (14 April 2010). "Deterring a "Dirty Bomb"". Newsweek. Retrieved 21 August 2011.
  4. "Nuclear Forensics" (PDF). AAAS. Retrieved 21 August 2011.