Nuclear ensemble approach

Last updated

The Nuclear Ensemble Approach (NEA) is a general method for simulations of diverse types of molecular spectra. [1] It works by sampling an ensemble of molecular conformations (nuclear geometries) in the source state, computing the transition probabilities to the target states for each of these geometries, and performing a sum over all these transitions convoluted with shape function. The result is an incoherent spectrum containing absolute band shapes through inhomogeneous broadening.

Contents

NEA simulates the spectrum in three steps: firstly an ensemble of molecular geometries is generated. 2)Secondly the transition probability between the initial and final states is computed for each geometry. Lastly a sum over all transition probabilities is done convoluted with a shape function. Nea-wp.png
NEA simulates the spectrum in three steps: firstly an ensemble of molecular geometries is generated. 2)Secondly the transition probability between the initial and final states is computed for each geometry. Lastly a sum over all transition probabilities is done convoluted with a shape function.

Motivation

Spectrum simulation is one of the most fundamental tasks in quantum chemistry. It allows comparing the theoretical results to experimental measurements. There are many theoretical methods for simulating spectra. Some are simple approximations (like stick spectra); others are high-level, accurate approximations (like those based on Fourier-transform of wavepacket propagations). The NEA lies in between. On the one hand, it is intuitive and straightforward to apply, providing much improved results compared to the stick spectrum. On the other hand, it does not recover all spectral effects and delivers a limited spectral resolution.  

Historical

The NEA is a multidimensional extension of the reflection principle, [2] an approach often used for estimating spectra in photodissociative systems. With popularization molecular mechanics, ensembles of geometries started to be also used to estimate the spectra through incoherent sums. [3] Thus, different from the reflection principle, which is usually done via direct integration of analytical functions, the NEA is a numerical approach. In 2012, a formal account of NEA showed that it corresponded to an approximation to the time-dependent spectrum simulation approach, employing a Monte Carlo integration of the wavepacket overlap time evolution. [1]

NEA for absorption spectrum

Consider an ensemble of molecules absorbing radiation in the UV/vis. Initially, all molecules are in the ground electronic state

Because of the molecular zero-point energy and temperature, the molecular geometry has a distribution around the equilibrium geometry. From a classical point of view, supposing that the photon absorption is an instantaneous process, each time a molecule is excited, it does so from a different geometry. As a consequence, the transition energy has not always the same value, but is a function of the nuclear coordinates.

The NEA captures this effect by creating an ensemble of geometries reflecting the zero-point energy, the temperature, or both.

In the NEA, the absorption spectrum (or absorption cross section) σ(E) at excitation energy E is calculated as [1]

where e and m are the electron charge and mass, c is the speed of light, ε0 the vacuum permittivity, and ћ the reduced Planck constant. The sums run over Nfs excited states and Np nuclear geometries xi. For each of such geometries in the ensemble, transition energies ΔE0n(xi) and oscillator strengths f0n(xi) between the ground (0) and the excited (n) states are computed. Each transition in the ensemble is convoluted with a normalized line shape function centered at ΔE0n(xi) and with width δ. Each xi is a vector collecting the cartesian components of the geometries of each atom.

The line shape function may be, for instance, a normalized Gaussian function given by

Although δ is an arbitrary parameter, it must be much narrower than the band width, not to interfere in its description. As the average value of band widths is around 0.3 eV, it is a good practice to adopt δ ≤ 0.05 eV. [4]

The geometries xi can be generated by any method able to describe the ground state distribution. Two of the most employed are dynamics and Wigner distribution nuclear normal modes. [5]

Molar extinction coefficient ε can be obtained from absorption cross section through

Because of the dependence of f0n on xi, NEA is a post-Condon approximation, and it can predict dark vibronic bands. [1]

NEA for emission spectrum

In the case of fluorescence, the differential emission rate is given by [1]

.

This expression assumes the validity of the Kasha's rule, with emission from the first excited state.

NEA for other types of spectrum

NEA can be used for many types of steady-state and time-resolved spectrum simulations. [6] Some examples beyond absorption and emission spectra are:

Limitations of NEA

By construction, NEA does not include information about the target (final) states. For this reason, any spectral information that depends on these states cannot be described in the framework of NEA. For example, vibronically resolved peaks in the absorption spectrum will not appear in the simulations, only the band envelope around them, because these peaks depend on the wavefunction overlap between the ground and excited state. [11] NEA can be, however, coupled to excited-state dynamics to recover these effects. [12]

NEA may be too computationally expensive for large molecules. The spectrum simulation requires the calculation of transition probabilities for hundreds of different nuclear geometries, which may become prohibitive due to the high computational costs. Machine learning methods coupled to NEA have been proposed to reduce these costs. [13] [4]

Related Research Articles

<span class="mw-page-title-main">Dirac delta function</span> Generalized function whose value is zero everywhere except at zero

In mathematical physics, the Dirac delta distribution, also known as the unit impulse, is a generalized function or distribution over the real numbers, whose value is zero everywhere except at zero, and whose integral over the entire real line is equal to one.

<span class="mw-page-title-main">Bremsstrahlung</span> Electromagnetic radiation due to deceleration of charged particles

In particle physics, bremsstrahlung is electromagnetic radiation produced by the deceleration of a charged particle when deflected by another charged particle, typically an electron by an atomic nucleus. The moving particle loses kinetic energy, which is converted into radiation, thus satisfying the law of conservation of energy. The term is also used to refer to the process of producing the radiation. Bremsstrahlung has a continuous spectrum, which becomes more intense and whose peak intensity shifts toward higher frequencies as the change of the energy of the decelerated particles increases.

Circular dichroism (CD) is dichroism involving circularly polarized light, i.e., the differential absorption of left- and right-handed light. Left-hand circular (LHC) and right-hand circular (RHC) polarized light represent two possible spin angular momentum states for a photon, and so circular dichroism is also referred to as dichroism for spin angular momentum. This phenomenon was discovered by Jean-Baptiste Biot, Augustin Fresnel, and Aimé Cotton in the first half of the 19th century. Circular dichroism and circular birefringence are manifestations of optical activity. It is exhibited in the absorption bands of optically active chiral molecules. CD spectroscopy has a wide range of applications in many different fields. Most notably, UV CD is used to investigate the secondary structure of proteins. UV/Vis CD is used to investigate charge-transfer transitions. Near-infrared CD is used to investigate geometric and electronic structure by probing metal d→d transitions. Vibrational circular dichroism, which uses light from the infrared energy region, is used for structural studies of small organic molecules, and most recently proteins and DNA.

<span class="mw-page-title-main">Magnetic circular dichroism</span>

Magnetic circular dichroism (MCD) is the differential absorption of left and right circularly polarized (LCP and RCP) light, induced in a sample by a strong magnetic field oriented parallel to the direction of light propagation. MCD measurements can detect transitions which are too weak to be seen in conventional optical absorption spectra, and it can be used to distinguish between overlapping transitions. Paramagnetic systems are common analytes, as their near-degenerate magnetic sublevels provide strong MCD intensity that varies with both field strength and sample temperature. The MCD signal also provides insight into the symmetry of the electronic levels of the studied systems, such as metal ion sites.

<span class="mw-page-title-main">Fokker–Planck equation</span> Partial differential equation

In statistical mechanics and information theory, the Fokker–Planck equation is a partial differential equation that describes the time evolution of the probability density function of the velocity of a particle under the influence of drag forces and random forces, as in Brownian motion. The equation can be generalized to other observables as well. The Fokker-Planck equation has multiple applications in information theory, graph theory, data science, finance, economics etc.

Density-functional theory (DFT) is a computational quantum mechanical modelling method used in physics, chemistry and materials science to investigate the electronic structure of many-body systems, in particular atoms, molecules, and the condensed phases. Using this theory, the properties of a many-electron system can be determined by using functionals, i.e. functions of another function. In the case of DFT, these are functionals of the spatially dependent electron density. DFT is among the most popular and versatile methods available in condensed-matter physics, computational physics, and computational chemistry.

In the calculus of variations, a field of mathematical analysis, the functional derivative relates a change in a functional to a change in a function on which the functional depends.

In computational physics and chemistry, the Hartree–Fock (HF) method is a method of approximation for the determination of the wave function and the energy of a quantum many-body system in a stationary state.

<span class="mw-page-title-main">Hyperfine structure</span> Small shifts and splittings in the energy levels of atoms, molecules and ions

In atomic physics, hyperfine structure is defined by small shifts in otherwise degenerate energy levels and the resulting splittings in those energy levels of atoms, molecules, and ions, due to electromagnetic multipole interaction between the nucleus and electron clouds.

<span class="mw-page-title-main">Rotational spectroscopy</span> Spectroscopy of quantized rotational states of gases

Rotational spectroscopy is concerned with the measurement of the energies of transitions between quantized rotational states of molecules in the gas phase. The spectra of polar molecules can be measured in absorption or emission by microwave spectroscopy or by far infrared spectroscopy. The rotational spectra of non-polar molecules cannot be observed by those methods, but can be observed and measured by Raman spectroscopy. Rotational spectroscopy is sometimes referred to as pure rotational spectroscopy to distinguish it from rotational-vibrational spectroscopy where changes in rotational energy occur together with changes in vibrational energy, and also from ro-vibronic spectroscopy where rotational, vibrational and electronic energy changes occur simultaneously.

Verlet integration is a numerical method used to integrate Newton's equations of motion. It is frequently used to calculate trajectories of particles in molecular dynamics simulations and computer graphics. The algorithm was first used in 1791 by Jean Baptiste Delambre and has been rediscovered many times since then, most recently by Loup Verlet in the 1960s for use in molecular dynamics. It was also used by P. H. Cowell and A. C. C. Crommelin in 1909 to compute the orbit of Halley's Comet, and by Carl Størmer in 1907 to study the trajectories of electrical particles in a magnetic field . The Verlet integrator provides good numerical stability, as well as other properties that are important in physical systems such as time reversibility and preservation of the symplectic form on phase space, at no significant additional computational cost over the simple Euler method.

<span class="mw-page-title-main">Electron paramagnetic resonance</span> Technique to study materials that have unpaired electrons

Electron paramagnetic resonance (EPR) or electron spin resonance (ESR) spectroscopy is a method for studying materials that have unpaired electrons. The basic concepts of EPR are analogous to those of nuclear magnetic resonance (NMR), but the spins excited are those of the electrons instead of the atomic nuclei. EPR spectroscopy is particularly useful for studying metal complexes and organic radicals. EPR was first observed in Kazan State University by Soviet physicist Yevgeny Zavoisky in 1944, and was developed independently at the same time by Brebis Bleaney at the University of Oxford.

In spectroscopy, the Autler–Townes effect, is a dynamical Stark effect corresponding to the case when an oscillating electric field is tuned in resonance to the transition frequency of a given spectral line, and resulting in a change of the shape of the absorption/emission spectra of that spectral line. The AC Stark effect was discovered in 1955 by American physicists Stanley Autler and Charles Townes.

In computational chemistry, a constraint algorithm is a method for satisfying the Newtonian motion of a rigid body which consists of mass points. A restraint algorithm is used to ensure that the distance between mass points is maintained. The general steps involved are: (i) choose novel unconstrained coordinates, (ii) introduce explicit constraint forces, (iii) minimize constraint forces implicitly by the technique of Lagrange multipliers or projection methods.

The Widom insertion method is a statistical thermodynamic approach to the calculation of material and mixture properties. It is named for Benjamin Widom, who derived it in 1963. In general, there are two theoretical approaches to determining the statistical mechanical properties of materials. The first is the direct calculation of the overall partition function of the system, which directly yields the system free energy. The second approach, known as the Widom insertion method, instead derives from calculations centering on one molecule. The Widom insertion method directly yields the chemical potential of one component rather than the system free energy. This approach is most widely applied in molecular computer simulations but has also been applied in the development of analytical statistical mechanical models. The Widom insertion method can be understood as an application of the Jarzynski equality since it measures the excess free energy difference via the average work needed to perform, when changing the system from a state with N molecules to a state with N+1 molecules. Therefore it measures the excess chemical potential since , where .

Optical gain is the most important requirement for the realization of a semiconductor laser because it describes the optical amplification in the semiconductor material. This optical gain is due to stimulated emission associated with light emission created by recombination of electrons and holes. While in other laser materials like in gas lasers or solid state lasers, the processes associated with optical gain are rather simple, in semiconductors this is a complex many-body problem of interacting photons, electrons, and holes. Accordingly, understanding these processes is a major objective as being a basic requirement for device optimization. This task can be solved by development of appropriate theoretical models to describe the semiconductor optical gain and by comparison of the predictions of these models with experimental results found.

Surface hopping is a mixed quantum-classical technique that incorporates quantum mechanical effects into molecular dynamics simulations. Traditional molecular dynamics assume the Born-Oppenheimer approximation, where the lighter electrons adjust instantaneously to the motion of the nuclei. Though the Born-Oppenheimer approximation is applicable to a wide range of problems, there are several applications, such as photoexcited dynamics, electron transfer, and surface chemistry where this approximation falls apart. Surface hopping partially incorporates the non-adiabatic effects by including excited adiabatic surfaces in the calculations, and allowing for 'hops' between these surfaces, subject to certain criteria.

Molecular symmetry in physics and chemistry describes the symmetry present in molecules and the classification of molecules according to their symmetry. Molecular symmetry is a fundamental concept in the application of Quantum Mechanics in physics and chemistry, for example it can be used to predict or explain many of a molecule's properties, such as its dipole moment and its allowed spectroscopic transitions, without doing the exact rigorous calculations. To do this it is necessary to classify the states of the molecule using the irreducible representations from the character table of the symmetry group of the molecule. Among all the molecular symmetries, diatomic molecules show some distinct features and they are relatively easier to analyze.

<span class="mw-page-title-main">Newton-X</span> Molecular dynamics simulation software

Newton-X is a general program for molecular dynamics simulations beyond the Born-Oppenheimer approximation. It has been primarily used for simulations of ultrafast processes in photoexcited molecules. It has also been used for simulation of band envelops of absorption and emission spectra.

Hybrid stochastic simulations are a sub-class of stochastic simulations. These simulations combine existing stochastic simulations with other stochastic simulations or algorithms. Generally they are used for physics and physics-related research. The goal of a hybrid stochastic simulation varies based on context, however they typically aim to either improve accuracy or reduce computational complexity. The first hybrid stochastic simulation was developed in 1985.

References

  1. 1 2 3 4 5 Crespo-Otero R, Barbatti M (June 2012). "Spectrum simulation and decomposition with nuclear ensemble: formal derivation and application to benzene, furan and 2-phenylfuran". Theoretical Chemistry Accounts. 131 (6): 1237. doi:10.1007/s00214-012-1237-4. ISSN   1432-881X. S2CID   95758853.
  2. Schinke R (April 1993). Photodissociation Dynamics: Spectroscopy and Fragmentation of Small Polyatomic Molecules. Cambridge Monographs on Atomic, Molecular and Chemical Physics (1 ed.). Cambridge University Press. doi:10.1017/cbo9780511586453. ISBN   978-0-521-48414-5.
  3. Bergsma JP, Berens PH, Wilson KR, Fredkin DR, Heller EJ (February 1984). "Electronic spectra from molecular dynamics: a simple approach". The Journal of Physical Chemistry. 88 (3): 612–619. doi:10.1021/j150647a055.
  4. 1 2 Xue BX, Barbatti M, Dral PO (August 2020). "Machine Learning for Absorption Cross Sections". The Journal of Physical Chemistry A. 124 (35): 7199–7210. Bibcode:2020JPCA..124.7199X. doi:10.1021/acs.jpca.0c05310. PMC   7511037 . PMID   32786977.
  5. Barbatti M, Sen K (May 2016). "Effects of different initial condition samplings on photodynamics and spectrum of pyrrole" (PDF). International Journal of Quantum Chemistry. 116 (10): 762–771. doi:10.1002/qua.25049.
  6. 1 2 Bennett K, Kowalewski M, Mukamel S (2015). "Probing electronic and vibrational dynamics in molecules by time-resolved photoelectron, Auger-electron, and X-ray photon scattering spectroscopy". Faraday Discussions. 177: 405–28. Bibcode:2015FaDi..177..405B. doi:10.1039/C4FD00178H. PMC   4401660 . PMID   25730500.
  7. Segarra-Martí J, Segatta F, Mackenzie TA, Nenov A, Rivalta I, Bearpark MJ, Garavelli M (December 2019). "Modeling multidimensional spectral lineshapes from first principles: application to water-solvated adenine". Faraday Discussions. 221: 219–244. doi:10.1039/C9FD00072K. hdl: 10044/1/70922 . PMID   31544178. S2CID   196857298.
  8. Polli D, Altoè P, Weingart O, Spillane KM, Manzoni C, Brida D, et al. (September 2010). "Conical intersection dynamics of the primary photoisomerization event in vision". Nature. 467 (7314): 440–3. Bibcode:2010Natur.467..440P. doi:10.1038/nature09346. PMID   20864998. S2CID   4354278.
  9. Arbelo-González W, Crespo-Otero R, Barbatti M (October 2016). "Steady and Time-Resolved Photoelectron Spectra Based on Nuclear Ensembles" (PDF). Journal of Chemical Theory and Computation. 12 (10): 5037–5049. doi:10.1021/acs.jctc.6b00704. PMID   27588827.
  10. McFarland BK, Farrell JP, Miyabe S, Tarantelli F, Aguilar A, Berrah N, et al. (June 2014). "Ultrafast X-ray Auger probing of photoexcited molecular dynamics". Nature Communications. 5 (1): 4235. Bibcode:2014NatCo...5.4235M. doi: 10.1038/ncomms5235 . PMID   24953740.
  11. Heller EJ (December 1981). "The semiclassical way to molecular spectroscopy 2". Accounts of Chemical Research. 14 (12): 368–375. doi:10.1021/ar00072a002.
  12. Petit AS, Subotnik JE (October 2014). "Calculating time-resolved differential absorbance spectra for ultrafast pump-probe experiments with surface hopping trajectories". The Journal of Chemical Physics. 141 (15): 154108. Bibcode:2014JChPh.141o4108P. doi: 10.1063/1.4897258 . PMID   25338882.
  13. Ye ZR, Huang IS, Chan YT, Li ZJ, Liao CC, Tsai HR, et al. (2020). "Predicting the emission wavelength of organic molecules using a combinatorial QSAR and machine learning approach". RSC Advances. 10 (40): 23834–23841. Bibcode:2020RSCAd..1023834Y. doi: 10.1039/D0RA05014H .