NICA (Nuclotron-based Ion Collider fAcility) [1] is a particle collider complex being constructed by the Joint Institute for Nuclear Research in Dubna, Russia to perform experiments such as Nuclotron ion beams extracted to a fixed target and colliding beams of ions, ions-protons, polarized protons and deuterons. [2] The projected maximum kinetic energy of the accelerated ions is 4.5 GeV per nucleon, and 12.6 GeV for protons. [3]
Main elements of the NICA complex are: [4]
LU-20 injection device produces ions of 5 MeV/n energy. It is succeeded by three-staged Light Ion Linac (LILAc) that is capable of light particles acceleration up 7 MeV/n energy, 13 MeV proton acceleration section and a 20 MeV superconducting HWR proton accelerating section.
Heavy-Ion Linac (HILAc), conceived in 2016 by the JINR-Bevatech collaboration, accelerates heavy gold ions up to the energy of 3.2 MeV/n with beam intensity of 2×109 particles per pulse, and a repetition rate of 10 Hz. The gold ions are injected from a JNIR-made KRION superconducting electron-string heavy ion source.
The Booster, a superconducting synchrotron, accumulates, cools and further accelerates heavy ions to 600 MeV/n energy. The booster's circumference is 211 meters, its magnetic structure is mounted inside the yoke of the Nuclotron. The Booster is supposed to ensure ultrahigh vacuum of 10−11 Torr.
The Nuclotron to be used in NICA was constructed in 1987–1992. It is the world's first synchrotron based on fast cycling electromagnets of the 'window frame' type with superconducting coil.
The collider is made of two identical 503-meter long storage rings with MPD and SPD placed in the middle of the opposite straight sections. Magnetic rigidity is up to 45 Tm, residual gas pressure in the beam chamber is below 10−10 Torr, maximum field in the dipole magnets – 1.8 T, kinetic energy of gold nuclei – 1.0 to 4.5 GeV/n. The beams are combined and separated in the vertical plane. Upon passing the section bringing them together, the particle bunches in the upper and lower rings travel along a common straight trajectory toward each other to collide at MPD and SPD. Single-aperture lenses are installed along the final focus sections to provide that both beams are focused at SPD and MPD.
MPD facility is designed to study hadron matter at high temperatures and densities, where nucleons "melt" releasing their constituent quarks and gluons and forming a new state, the quark-gluon plasma. [5]
SPD facility allows to collide the polarized beams of protons and deuterons to study the particle spin physics. [6]
By 2013, an international tender for scientific equipment supply was completed selecting five core suppliers. Up to 2019, most of the equipment has been delivered and mounted. First tests began in late 2019. [7] The construction that was initially scheduled to end in 2016 is now, as of 2020, to be accomplished by 2022. [8] [9] [10]
The European Organization for Nuclear Research, known as CERN, is an intergovernmental organization that operates the largest particle physics laboratory in the world. Established in 1954, it is based in Meyrin, western suburb of Geneva, on the France–Switzerland border. It comprises 23 member states. Israel, admitted in 2013, is the only non-European full member. CERN is an official United Nations General Assembly observer.
A cyclotron is a type of particle accelerator invented by Ernest Lawrence in 1929–1930 at the University of California, Berkeley, and patented in 1932. A cyclotron accelerates charged particles outwards from the center of a flat cylindrical vacuum chamber along a spiral path. The particles are held to a spiral trajectory by a static magnetic field and accelerated by a rapidly varying electric field. Lawrence was awarded the 1939 Nobel Prize in Physics for this invention.
Fermi National Accelerator Laboratory (Fermilab), located in Batavia, Illinois, near Chicago, is a United States Department of Energy national laboratory specializing in high-energy particle physics.
The Tevatron was a circular particle accelerator in the United States, at the Fermi National Accelerator Laboratory, east of Batavia, Illinois, and was the highest energy particle collider until the Large Hadron Collider (LHC) of the European Organization for Nuclear Research (CERN) was built near Geneva, Switzerland. The Tevatron was a synchrotron that accelerated protons and antiprotons in a 6.28 km (3.90 mi) circumference ring to energies of up to 1 TeV, hence its name. The Tevatron was completed in 1983 at a cost of $120 million and significant upgrade investments were made during its active years of 1983–2011.
A linear particle accelerator is a type of particle accelerator that accelerates charged subatomic particles or ions to a high speed by subjecting them to a series of oscillating electric potentials along a linear beamline. The principles for such machines were proposed by Gustav Ising in 1924, while the first machine that worked was constructed by Rolf Widerøe in 1928 at the RWTH Aachen University. Linacs have many applications: they generate X-rays and high energy electrons for medicinal purposes in radiation therapy, serve as particle injectors for higher-energy accelerators, and are used directly to achieve the highest kinetic energy for light particles for particle physics.
A synchrotron is a particular type of cyclic particle accelerator, descended from the cyclotron, in which the accelerating particle beam travels around a fixed closed-loop path. The magnetic field which bends the particle beam into its closed path increases with time during the accelerating process, being synchronized to the increasing kinetic energy of the particles.
The Joint Institute for Nuclear Research, in Dubna, Moscow Oblast, Russia, is an international research center for nuclear sciences, with 5500 staff members including 1200 researchers holding over 1000 Ph.Ds from eighteen countries. Most scientists are scientists of Russian Federation.
The International Linear Collider (ILC) is a proposed linear particle accelerator. It is planned to have a collision energy of 500 GeV initially, with the possibility for a later upgrade to 1000 GeV (1 TeV). Although early proposed locations for the ILC were Japan, Europe (CERN) and the USA (Fermilab), the Kitakami highland in the Iwate prefecture of northern Japan has been the focus of ILC design efforts since 2013. The Japanese government is willing to contribute half of the costs, according to the coordinator of study for detectors at the ILC.
The High Energy Accelerator Research Organization, known as KEK, is a Japanese organization whose purpose is to operate the largest particle physics laboratory in Japan, situated in Tsukuba, Ibaraki prefecture. It was established in 1997. The term "KEK" is also used to refer to the laboratory itself, which employs approximately 695 employees. KEK's main function is to provide the particle accelerators and other infrastructure needed for high-energy physics, material science, structural biology, radiation science, computing science, nuclear transmutation and so on. Numerous experiments have been constructed at KEK by the internal and international collaborations that have made use of them. Makoto Kobayashi, emeritus professor at KEK, is known globally for his work on CP-violation, and was awarded the 2008 Nobel Prize in Physics.
High-energy nuclear physics studies the behavior of nuclear matter in energy regimes typical of high-energy physics. The primary focus of this field is the study of heavy-ion collisions, as compared to lighter atoms in other particle accelerators. At sufficient collision energies, these types of collisions are theorized to produce the quark–gluon plasma. In peripheral nuclear collisions at high energies one expects to obtain information on the electromagnetic production of leptons and mesons that are not accessible in electron–positron colliders due to their much smaller luminosities.
HERA was a particle accelerator at DESY in Hamburg. It was operated from 1992 to 30 June 2007. At HERA, electrons or positrons were brought to collision with protons at a center-of-mass energy of 320 GeV. HERA was used mainly to study the structure of protons and the properties of quarks, laying the foundation for much of the science done at the Large Hadron Collider (LHC) at the CERN particle physics laboratory today. HERA is the only lepton–proton collider in the world to date and was on the energy frontier in certain regions of the kinematic range.
The Proton Synchrotron is a particle accelerator at CERN. It is CERN's first synchrotron, beginning its operation in 1959. For a brief period the PS was the world's highest energy particle accelerator. It has since served as a pre-accelerator for the Intersecting Storage Rings (ISR) and the Super Proton Synchrotron (SPS), and is currently part of the Large Hadron Collider (LHC) accelerator complex. In addition to protons, PS has accelerated alpha particles, oxygen and sulfur nuclei, electrons, positrons, and antiprotons.
The Alternating Gradient Synchrotron (AGS) is a particle accelerator located at the Brookhaven National Laboratory in Long Island, New York, United States.
The Proton Synchrotron Booster (PSB) is the first and smallest circular proton accelerator in the accelerator chain at the CERN injection complex, which also provides beams to the Large Hadron Collider. It contains four superimposed rings with a radius of 25 meters, which receive protons with an energy of 160 MeV from the linear accelerator Linac4 and accelerate them up to 2.0 GeV, ready to be injected into the Proton Synchrotron (PS). Before the PSB was built in 1972, Linac 1 injected directly into the Proton Synchrotron, but the increased injection energy provided by the booster allowed for more protons to be injected into the PS and a higher luminosity at the end of the accelerator chain.
A particle accelerator is a machine that uses electromagnetic fields to propel charged particles to very high speeds and energies to contain them in well-defined beams. Large accelerators are used for fundamental research in particle physics. Accelerators are also used as synchrotron light sources for the study of condensed matter physics. Smaller particle accelerators are used in a wide variety of applications, including particle therapy for oncological purposes, radioisotope production for medical diagnostics, ion implanters for the manufacture of semiconductors, and accelerator mass spectrometers for measurements of rare isotopes such as radiocarbon.
The UNK proton accelerator is an uncompleted project of 3 TeV large superconductor-based particle accelerator in Protvino, near Moscow, Russia, at the Institute for High Energy Physics. The U-70 synchrotron commissioned in 1967 was supposed to act as an injector for the UNK proton-proton collider ring.
Nuclotron is a superconductive synchrotron, exploited by the Joint Institute for Nuclear Research in Dubna, Russia. This particle accelerator is based on a miniature iron-shaped field superconductive magnets, and has a particle energy up to 7 GeV. It was built in 1987–1992 as a part of Dubna synchrophasotron modernisation program. Five runs of about 1400 hours total duration have been provided by the present time. The most important experiments tested the cryomagnetic system of a novel type, and obtained data on nuclear collisions using internal target.
The CERN Hadron Linacs are linear accelerators that accelerate beams of hadrons from a standstill to be used by the larger circular accelerators at the facility.
An energy recovery linac (ERL) is a type of linear particle accelerator that provides a beam of electrons used to produce x-rays by synchrotron radiation. First proposed in 1965 the idea gained interest since the early 2000s.
The LEP Pre-Injector (LPI) was the initial source that provided electrons and positrons to CERN's accelerator complex for the Large Electron–Positron Collider (LEP) from 1989 until 2000.