Null infinity

Last updated

In theoretical physics, null infinity is a region at the boundary of asymptotically flat spacetimes. In general relativity, straight paths in spacetime, called geodesics, may be space-like, time-like, or light-like (also called null). The distinction between these paths stems from whether the spacetime interval of the path is positive (corresponding to space-like), negative (corresponding to time-like), or zero (corresponding to null). Light-like paths physically correspond to physical phenomena which propagate through space at the speed of light, such as electromagnetic radiation and gravitational radiation. The boundary of a flat spacetime is known as conformal infinity, and can be thought of as the end points of all geodesics as they go off to infinity. [1] The region of null infinity corresponds to the terminus of all null geodesics in a flat Minkowski space. The different regions of conformal infinity are most often visualized on a Penrose diagram, where they make up the boundary of the diagram. There are two distinct region of null infinity, called past and future null infinity, which can be denoted using a script 'I' as and . These two regions are often referred to as 'scri-plus' and 'scri-minus' respectively. [2] Geometrically, each of these regions actually has the structure of a topologically cylindrical three dimensional region.

Contents

The study of null infinity originated from the need to describe the global properties of spacetime. While early methods in general relativity focused on the local structure built around local frames of reference, work beginning in the 1960s began analyzing global descriptions of general relativity, analyzing the structure of spacetime as a whole. [3] The original study of null infinity originated with Roger Penrose's work analyzing black hole spacetimes. [4] Null infinity is a useful mathematical tool for analyzing behavior in asymptotically flat spaces when limits of null paths need to be taken. For instance, black hole spacetimes are asymptotically flat, and null infinity can be used to characterize radiation in the limit that it travels outward away from the black hole. [5] Null infinity can also be considered in the context of spacetimes which are not necessarily asymptotically flat, such as in the FLRW cosmology. [2]

Conformal compactification in Minkowski spacetime

The Penrose diagram for Minkowski spacetime. Radial position is on the horizontal axis and time is on the vertical axis. Null infinity is the diagonal boundary of the diagram, designated with script 'I'. Penrose Diagram.png
The Penrose diagram for Minkowski spacetime. Radial position is on the horizontal axis and time is on the vertical axis. Null infinity is the diagonal boundary of the diagram, designated with script 'I'.

The metric for a flat Minkowski spacetime in spherical coordinates is . Conformal compactification induces a transformation which preserves angles, but changes the local structure of the metric and adds the boundary of the manifold, thus making it compact. [6] For a given metric , a conformal compactification scales the entire metric by some conformal factor such that such that all of the points at infinity are scaled down to a finite value. [3] Typically, the radial and time coordinates are transformed into null coordinates and . These are then transformed as and in order to use the properties of the inverse tangent function to map infinity to a finite value. [2] The typical time and space coordinates may be introduced as and . After these coordinate transformations, a conformal factor is introduced, leading to a new unphysical metric for Minkowski space: [7]

.

This is the metric on a Penrose diagram, illustrated. Unlike the original metric, this metric describes, a manifold with a boundary, given by the restrictions on and . There are two null surfaces on this boundary, corresponding to past and future null infinity. Specifically, future null infinity consists of all points where and , and past null infinity consists of all points where and . [2]

From the coordinate restrictions, null infinity is a three dimensional null surface, with a cylindrical topology . [1] [8]

The construction given here is specific to the flat metric of Minkowski space. However, such a construction generalizes to other asymptotically flat spaces as well. In such scenarios, null infinity still exists as a three dimensional null surface at the boundary of the spacetime manifold, but the manifold's overall structure might be different. For instance, in Minkowski space, all null geodesics begin at past null infinity and end at future null infinity. However, in the Schwarzschild black hole spacetime, the black hole event horizon leads to two possibilities: geodesics may end at null infinity, but may also end at the black hole's future singularity. The presence of null infinity (along with the other regions of conformal infinity) guarantees geodesic completion on the spacetime manifold, where all geodesics terminate either at a true singularity or intersect the boundary of infinity. [7]

Other physical applications

The symmetries of null infinity are characteristically different from that of the typical regions of spacetime. While the symmetries of a flat Minkowski spacetime are given by the Poincaré group, the symmetries of null infinity are instead given by the Bondi–Metzner–Sachs (BMS) group. [9] [10] The work by Bondi, Metzner, and Sachs characterized gravitational radiation using analyses related to null infinity, whereas previous work such as the ADM framework dealt with characterizations of spacelike infinity. [8] In recent years, interest has grown in studying gravitons on the boundary null infinity. [8] [11] Using the BMS group, quanta on null infinity can be characterized as massless spin-2 particles, consistent with the quanta of general relativity being gravitons. [8]

Related Research Articles

The weak and the strong cosmic censorship hypotheses are two mathematical conjectures about the structure of gravitational singularities arising in general relativity.

<span class="mw-page-title-main">General relativity</span> Theory of gravitation as curved spacetime

General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics. General relativity generalizes special relativity and refines Newton's law of universal gravitation, providing a unified description of gravity as a geometric property of space and time or four-dimensional spacetime. In particular, the curvature of spacetime is directly related to the energy and momentum of whatever matter and radiation are present. The relation is specified by the Einstein field equations, a system of second order partial differential equations.

<span class="mw-page-title-main">Gravitational singularity</span> Condition in which spacetime itself breaks down

A gravitational singularity, spacetime singularity or simply singularity is a condition in which gravity is predicted to be so intense that spacetime itself would break down catastrophically. As such, a singularity is by definition no longer part of the regular spacetime and cannot be determined by "where" or "when". Gravitational singularities exist at a junction between general relativity and quantum mechanics; therefore, the properties of the singularity cannot be described without an established theory of quantum gravity. Trying to find a complete and precise definition of singularities in the theory of general relativity, the current best theory of gravity, remains a difficult problem. A singularity in general relativity can be defined by the scalar invariant curvature becoming infinite or, better, by a geodesic being incomplete.

The Penrose–Hawking singularity theorems are a set of results in general relativity that attempt to answer the question of when gravitation produces singularities. The Penrose singularity theorem is a theorem in semi-Riemannian geometry and its general relativistic interpretation predicts a gravitational singularity in black hole formation. The Hawking singularity theorem is based on the Penrose theorem and it is interpreted as a gravitational singularity in the Big Bang situation. Penrose was awarded the Nobel Prize in Physics in 2020 "for the discovery that black hole formation is a robust prediction of the general theory of relativity", which he shared with Reinhard Genzel and Andrea Ghez.

<span class="mw-page-title-main">Anti-de Sitter space</span> Maximally symmetric Lorentzian manifold with a negative cosmological constant

In mathematics and physics, n-dimensional anti-de Sitter space (AdSn) is a maximally symmetric Lorentzian manifold with constant negative scalar curvature. Anti-de Sitter space and de Sitter space are named after Willem de Sitter (1872–1934), professor of astronomy at Leiden University and director of the Leiden Observatory. Willem de Sitter and Albert Einstein worked together closely in Leiden in the 1920s on the spacetime structure of the universe. Paul Dirac was the first person to rigorously explore anti-de Sitter space, doing so in 1963.

The Kerr metric or Kerr geometry describes the geometry of empty spacetime around a rotating uncharged axially symmetric black hole with a quasispherical event horizon. The Kerr metric is an exact solution of the Einstein field equations of general relativity; these equations are highly non-linear, which makes exact solutions very difficult to find.

<span class="mw-page-title-main">Penrose diagram</span> Two-dimensional diagram capturing the causal relations between different points in spacetime

In theoretical physics, a Penrose diagram is a two-dimensional diagram capturing the causal relations between different points in spacetime through a conformal treatment of infinity. It is an extension of the Minkowski diagram of special relativity where the vertical dimension represents time, and the horizontal dimension represents a space dimension. Using this design, all light rays take a 45° path . Locally, the metric on a Penrose diagram is conformally equivalent to the metric of the spacetime depicted. The conformal factor is chosen such that the entire infinite spacetime is transformed into a Penrose diagram of finite size, with infinity on the boundary of the diagram. For spherically symmetric spacetimes, every point in the Penrose diagram corresponds to a 2-dimensional sphere .

Rindler coordinates are a coordinate system used in the context of special relativity to describe the hyperbolic acceleration of a uniformly accelerating reference frame in flat spacetime. In relativistic physics the coordinates of a hyperbolically accelerated reference frame constitute an important and useful coordinate chart representing part of flat Minkowski spacetime. In special relativity, a uniformly accelerating particle undergoes hyperbolic motion, for which a uniformly accelerating frame of reference in which it is at rest can be chosen as its proper reference frame. The phenomena in this hyperbolically accelerated frame can be compared to effects arising in a homogeneous gravitational field. For general overview of accelerations in flat spacetime, see Acceleration and Proper reference frame.

In general relativity, the pp-wave spacetimes, or pp-waves for short, are an important family of exact solutions of Einstein's field equation. The term pp stands for plane-fronted waves with parallel propagation, and was introduced in 1962 by Jürgen Ehlers and Wolfgang Kundt.

An asymptotically flat spacetime is a Lorentzian manifold in which, roughly speaking, the curvature vanishes at large distances from some region, so that at large distances, the geometry becomes indistinguishable from that of Minkowski spacetime.

In physics, a Killing horizon is a geometrical construct used in general relativity and its generalizations to delineate spacetime boundaries without reference to the dynamic Einstein field equations. Mathematically a Killing horizon is a null hypersurface defined by the vanishing of the norm of a Killing vector field. It can also be defined as a null hypersurface generated by a Killing vector, which in turn is null at that surface.

In differential geometry and theoretical physics, the Petrov classification describes the possible algebraic symmetries of the Weyl tensor at each event in a Lorentzian manifold.

In theoretical physics, Nordström's theory of gravitation was a predecessor of general relativity. Strictly speaking, there were actually two distinct theories proposed by the Finnish theoretical physicist Gunnar Nordström, in 1912 and 1913 respectively. The first was quickly dismissed, but the second became the first known example of a metric theory of gravitation, in which the effects of gravitation are treated entirely in terms of the geometry of a curved spacetime.

The concept of mass in general relativity (GR) is more subtle to define than the concept of mass in special relativity. In fact, general relativity does not offer a single definition of the term mass, but offers several different definitions that are applicable under different circumstances. Under some circumstances, the mass of a system in general relativity may not even be defined.

<span class="mw-page-title-main">Causal sets</span> Approach to quantum gravity using discrete spacetime

The causal sets program is an approach to quantum gravity. Its founding principles are that spacetime is fundamentally discrete and that spacetime events are related by a partial order. This partial order has the physical meaning of the causality relations between spacetime events.

In mathematical physics, the causal structure of a Lorentzian manifold describes the causal relationships between points in the manifold.

Calculations in the Newman–Penrose (NP) formalism of general relativity normally begin with the construction of a complex null tetrad, where is a pair of real null vectors and is a pair of complex null vectors. These tetrad vectors respect the following normalization and metric conditions assuming the spacetime signature

The Ellis wormhole is the special case of the Ellis drainhole in which the 'ether' is not flowing and there is no gravity. What remains is a pure traversable wormhole comprising a pair of identical twin, nonflat, three-dimensional regions joined at a two-sphere, the 'throat' of the wormhole. As seen in the image shown, two-dimensional equatorial cross sections of the wormhole are catenoidal 'collars' that are asymptotically flat far from the throat. There being no gravity in force, an inertial observer can sit forever at rest at any point in space, but if set in motion by some disturbance will follow a geodesic of an equatorial cross section at constant speed, as would also a photon. This phenomenon shows that in space-time the curvature of space has nothing to do with gravity.

In gravitational theory, the Bondi–Metzner–Sachs (BMS) group, or the Bondi–van der Burg–Metzner–Sachs group, is an asymptotic symmetry group of asymptotically flat, Lorentzian spacetimes at null infinity. It was originally formulated in 1962 by Hermann Bondi, M. G. van der Burg, A. W. Metzner and Rainer K. Sachs in order to investigate the flow of energy at infinity due to propagating gravitational waves. Half a century later, this work of Bondi, van der Burg, Metzner, and Sachs is considered pioneering and seminal. In his autobiography, Bondi considered the 1962 work as his "best scientific work".

References

  1. 1 2 Hawking, S. W.; Ellis, G. F. R. (1973). The Large Scale Structure of Space-Time. Cambridge Monographs on Mathematical Physics. Cambridge University Press. doi:10.1017/cbo9780511524646. ISBN   978-0-521-09906-6.
  2. 1 2 3 4 Carroll, Sean M. (2019). Spacetime and Geometry: An Introduction to General Relativity. Cambridge University Press. doi:10.1017/9781108770385. ISBN   9781108488396. S2CID   126323605 . Retrieved 2023-05-08.
  3. 1 2 Misner, C. W.; Thorne, K. S.; Wheeler, J. A.; Chandrasekhar, S. (1 August 1974). "Gravitation". Physics Today. 27 (8): 47–48. Bibcode:1974PhT....27h..47M. doi:10.1063/1.3128805. ISSN   0031-9228.
  4. Penrose, Roger (18 January 1965). "Gravitational Collapse and Space-Time Singularities". Physical Review Letters. 14 (3): 57–59. Bibcode:1965PhRvL..14...57P. doi: 10.1103/PhysRevLett.14.57 .
  5. Lehner, Luis (December 1998). Gravitational Radiation from Black Hole Spacetimes (PhD thesis). University of Pittsburgh. Bibcode:1998PhDT.........6L.
  6. Stewart, John (1991). Advanced General Relativity. Cambridge Monographs on Mathematical Physics. Cambridge: Cambridge University Press. doi:10.1017/cbo9780511608179. ISBN   978-0-521-44946-5.
  7. 1 2 D'Inverno, R. A. (1992). Introducing Einstein's Relativity (1st ed.). Clarendon Press. ISBN   978-0198596868.
  8. 1 2 3 4 Ashtekar, Abhay (2015). "Geometry and physics of null infinity". Surveys in Differential Geometry. 20 (1): 99–122. arXiv: 1409.1800 . doi:10.4310/SDG.2015.v20.n1.a5. ISSN   2164-4713. S2CID   54611087.
  9. Bondi, H.; Van der Burg, M.G.J.; Metzner, A. (1962-08-21). "Gravitational waves in general relativity, VII. Waves from axi-symmetric isolated system". Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences. 269 (1336): 21–52. Bibcode:1962RSPSA.269...21B. doi:10.1098/rspa.1962.0161. ISSN   0080-4630. S2CID   120125096.
  10. Dray, T; Streubel, M (1984-01-11). "Angular momentum at null infinity". Classical and Quantum Gravity. 1 (1): 15–26. Bibcode:1984CQGra...1...15D. doi:10.1088/0264-9381/1/1/005. ISSN   0264-9381. S2CID   250751212.
  11. Adamo, Tim; Casali, Eduardo; Skinner, David (2014-04-15). "Ambitwistor strings and the scattering equations at one loop". Journal of High Energy Physics. 2014 (4): 104. arXiv: 1312.3828 . Bibcode:2014JHEP...04..104A. doi:10.1007/JHEP04(2014)104. ISSN   1029-8479. S2CID   119194796.