Number sense in animals

Last updated

Number sense in animals is the ability of creatures to represent and discriminate quantities of relative sizes by number sense. It has been observed in various species, from fish to primates. Animals are believed to have an approximate number system, the same system for number representation demonstrated by humans, which is more precise for smaller quantities and less so for larger values. An exact representation of numbers higher than three has not been attested in wild animals, [1] but can be demonstrated after a period of training in captive animals.

Contents

In order to distinguish number sense in animals from the symbolic and verbal number system in humans, researchers use the term numerosity, [2] rather than number, to refer to the concept that supports approximate estimation but does not support an exact representation of number quality.

Number sense in animals includes the recognition and comparison of number quantities. Some numerical operations, such as addition, have been demonstrated in many species, including rats and great apes. Representing fractions and fraction addition has been observed in chimpanzees. A wide range of species with an approximate number system suggests an early evolutionary origin of this mechanism or multiple convergent evolution events. Like humans, chicks have a left-to-right mental number line (they associate the left space with smaller numbers and the right space with larger numbers). [3]

Early studies

Wilhelm von Osten and Clever Hans Osten und Hans.jpg
Wilhelm von Osten and Clever Hans

At the beginning of the 20th century, Wilhelm von Osten famously, but prematurely, claimed human-like counting abilities in animals on the example of his horse named Hans. His claim is widely rejected today, as it is attributed to a methodological fallacy, which received the name Clever Hans phenomenon after this case. Von Osten claimed that his horse could perform arithmetic operations presented to the horse in writing or verbally, upon which the horse would knock on the ground with its hoof the number of times that corresponded to the answer. This apparent ability was demonstrated numerous times in the presence of the horse's owner and a wider audience, and was also observed when the owner was absent. However, upon a rigorous investigation by Oskar Pfungst in the first decade of 20th century, Hans' ability was shown to be not arithmetic in nature, but to be the ability to interpret minimal unconscious changes in body language of people when the correct answer was approaching. Today, the arithmetic abilities of Clever Hans are commonly rejected and the case serves as a reminder to the scientific community about the necessity of rigorous control for experimenter expectation in experiments. [2]

There were, however, other early and more reliable studies on number sense in animals. A prominent example is the work of Otto Koehler, who conducted a number of studies on number sense in animals between 1920s and 1970s. [4] In one of his studies [5] he showed that a raven named Jacob could reliably distinguish the number 5 across different tasks. This study was remarkable in that Koehler provided a systematic control condition in his experiment, which allowed him to test the number ability of the raven separately from the ability of the raven to encode other features, such as size and location of the objects. However, Koehler's work was largely overlooked in the English-speaking world, due to the limited availability of his publications, which were in German and partially published during World War II.

The experimental setup for the study of numerical cognition in animals was further enriched by the work of Francis [6] and Platt and Johnson. [7] In their experiments, the researchers deprived rats of food and then taught them to press a lever a specific number of times to obtain food. The rats learned to press the lever approximately the number of times specified by the researchers. Additionally, the researchers showed that rats' behavior was dependent on the number of required presses, and not for example on the time of pressing, as they varied the experiment to include faster and slower behavior on the rat's part by controlling how hungry the animal was.

Methodology

Examining the representation of numerosity in animals is a challenging task, since it is not possible to use language as a medium. Because of this, carefully designed experimental setups are required to differentiate between numerical abilities and other phenomena, such as the Clever Hans phenomenon, memorization of the single objects or perception of object size and time. Also, these abilities are seen only from the past few decades and not from the time of evolution.

One of the ways that numerical ability is thought to be demonstrated is the transfer of the concept of numerosity across modalities. This was for example the case in the experiment of Church and Meck, [8] in which rats learned to "add" the number of light flashes to the number of tones to find out the number of expected lever presses, showing a concept of numerosity independent of visual and auditory modalities.

Modern studies in number sense in animals try to control for other possible explanations of animal behavior by establishing control conditions in which the other explanations are tested. For example, when the number sense is investigated on the example of apple pieces, an alternative explanation is tested that assumes that the animal represents the volume of apple rather than a number of apple pieces. To test this alternative, an additional condition is introduced in which the volume of the apple varies and is occasionally smaller in the condition with a greater number of pieces. If the animal prefers a bigger number of pieces also in this condition, the alternative explanation is rejected, and the claim of numerical ability supported. [1]

Approximate number and parallel individuation systems

Numerosity is believed [9] to be represented by two separate systems in animals, similarly to humans. The first system is the approximate number system, an imprecise system used for estimations of quantities. This system is distinguished by distance and magnitude effects, which means that a comparison between numbers is easier and more precise when the distance between them is smaller and when the values of the numbers are smaller. The second system for representing numerosities is the parallel individuation system, which supports the exact representation of numbers from one to four. In addition, humans can represent numbers through symbolic systems, such as language.

The distinction between the approximate number system and the parallel individuation system is, however, still disputed, and some experiments [10] record behavior that can be fully explained with the approximate number system, without the need to assume another separate system for smaller numbers. For example, New Zealand robins repeatedly selected larger quantities of cached food with a precision that correlated with the total number of cache pieces. However, there was no significant discontinuity in their performance between small (1 to 4) and larger (above 4) sets, which would be predicted by the parallel individuation system. On the other hand, other experiments only report knowledge of numbers up to 4, supporting the existence of the parallel individuation system and not the approximate number system. [1]

Number sense in primates

Studies have shown that primates share similar cognitive algorithms for not only comparing numerical values, but also encoding those values as analogs. [11] [12] In fact, many experiments have supported that primates capacity for numbers is comparable to human children. [11] Through these experiments, it is clear that there are several neurological processing mechanisms at work— the approximate number system (ANS), number ordinality, the parallel individuation system (PNS), and subitization. [9]

Approximate number system

The approximate number system (ANS) is fairly imprecise and relies heavily on cognitive estimation and comparison. This system does not give numbers individual value, but compares quantities based on their relative size. The efficiency of this ANS depends on Weber’s law, which states that the ability to distinguish between quantities is dictated by the ratio between two numbers, not the absolute difference between them. [13] In other words, the accuracy of the ANS depends on the size difference between two quantities being compared. And since larger quantities are more difficult to comprehend than smaller quantities, the accuracy of ANS also decreases as numerosity increases. [9]

It has been found that rhesus macaques (Macaca mulatta), when given certain images of objects with multiple properties i.e. colors, shapes, and numbers, are quick to match the image with another of the same number of items regardless of the other properties. [14] This result supports the use of the ANS because the monkeys aren't defining numbers individually, but are rather matching sets of items of the same number using comparison of quantities. The tendency of macaques to categorize and equate groups of items by number is extremely suggestive of a functioning ANS in primates.

Examples of the ANS in primates exist during natural confrontation within and between groups. In the case of chimpanzees (Pan troglodytes), an intruder on a group’s territory will only be attacked if the intruder is alone and the attacking party is composed of at least three males— a ratio of one-to-three. Here, they are using ANS by way of comparative analysis of the invading group and their own group to determine whether or not to attack. [9] This social numerical superiority concept exists across many primate species and displays the understanding of power in numbers, at least in a comparative way. [15]

Further evidence of the ANS has been found in chimpanzees successfully identifying different quantities of food in a container. The chimpanzees listened to items of food that they were unable to see be thrown individually into separate containers. Then, they chose which container to eat from (based on which contained the higher amount of food). They were fairly successful with the task, indicating that the chimps had the capability to not only compare quantities, but also to keep track of those quantities within their minds. [16] The experiment did however break down at certain similar numbers of individual food items according to Weber's Law. [13]

Ordinality

The number skill most thoroughly supported in primates is ordinality – the ability to recognize sequential symbols or quantities. [17] Rather than merely determining if a value is greater or less than another like the ANS, ordinality requires a more nuanced recognition of the specific order of numbers or items in a set. [14] Here, Weber's Law is no longer applicable since the values are only increasing incrementally, often by only one. [16]

Primates have displayed ordinality both with arrays of items, as well as with Arabic numerals. When presented with arrays of 1-4 items, rhesus macaques were capable of consistently touching the arrays in ascending order. After this test, they were presented with arrays containing higher numbers of items and were able to extrapolate the task by touching the new arrays also in ascending sequential order. Moreover, the rate at which the monkeys performed the task was comparable to human adults. [18] [19]

Primates can also recognize sequences when given only Arabic numerals. One experiment known colloquially as the "chimp challenge" this task involved teaching chimpanzees to memorize the correct order of Arabic numerals from 1-9 then to press them in that order once they've disappeared scattered on a screen. Not only could the chimps recognize the correct sequence of the scattered numbers, but also recall the correct sequence after the numbers had disappeared on the screen. [20] Furthermore, they were able to do this faster and more accurately than human adults. [20] Without being provided with visual representation of the quantity that the number represented, this task signified a more advanced cognitive ability— differentiating symbols based on how they relate to each other in a series. [11]

Parallel individuation system

The parallel individuation system (PIS) is the most difficult number processing system to find evidence for in primates. This is because it requires the understanding that each number is a symbolic representation of a unique quantity that can be manipulated mathematically in a distinct way. [11] The PIS unlike the ANS, is therefore independent of the need for comparison, allowing each number to exist on its own with a value defined by arithmetic. In order to use the PIS, one must have some understanding of numerals—specific symbolic representations of quantities that relate to other symbolic representations of quantities in definite ways. [15] For example, the "chimp challenge" only displayed primates' understanding that three exists before four and after two, not that three can act on its own and independently hold a consistent value. [9]

Often, the experimental set up required to support the existence of the PIS is lengthy. Once a primate has been trained on a task long enough to display the PIS, the results are usually attributed to mere associative learning rather than exact number comprehension. In order to provide unequivocal evidence of the existence of the PIS in primates, researchers must find a situation where a primate performs some sort of arithmetic calculation in the wild. [12]

However, the closest researchers have come to successfully supporting the PIS in primates is in Rhesus macaques. In this study, the macaques were proven to associate auditory stimuli of a certain number of individual vocalizations with the correct number of individuals. While this didn't require them to learn Arabic numerals, it required the ability to choose an exact quantity for the voice number they heard rather than merely comparing quantities by sight or within a sequence. [21]

Subitization

Another important phenomenon to consider regarding primates understanding of numbers is subitization. Subitization is a phenomenon where the brain automatically groups small numbers of objects together visually without requiring it to go through any explicit mental counting of the objects. In humans, subitization allows for the recognition of numbers on pairs of dice due to the dot groupings rather than explicitly counting each dot. Essentially, it can give one a number sense without needing to understand the numerical system at low quantities. [12]

Subitization in primates is evident in a wide range of experiments. Rhesus monkeys have been proven to differentiate between numbers of apples in a container even when the sizes of the apple slices were manipulated (some larger but fewer slices). While this could be attributed to PIS, the act of comparing groupings of small numbers suggests subitization is likely at play, especially because the experiment broke down once the numbers reached above about four. [15]

Number sense by taxon

Fish

An approximate number system has been found in a number of fish species, such as guppies, green swordtails and mosquitofish. For example, preference for a bigger social group in mosquitofish was exploited to test the ability of the fish to discriminate numerosity. [22] The fish successfully discriminated between different amounts up to three, after which they could discriminate groups if the difference between them also increased so that the ratio of the two groups was one-to-two. Similarly, guppies discriminated between values up to four, after which they only detected differences when the ratio between the two quantities was one-to-two. [23]

Rats

Rats have demonstrated behavior consistent with an approximate number system [2] in experiments where they had to learn to press a lever a specified number of times to obtain food. While they did learn to press the lever the amount specified by the researchers, between four and sixteen, their behavior was approximate, proportional to the number of lever presses expected from them. This means that for the target number of four, the rats' responses varied from three to seven, and for the target number of 16 the responses varied from 12 to 24, showing a much greater interval. [7] This is compatible with the approximate number system and magnitude and distance effects.

Birds

Birds were one of the first animal species tested on their number sense. A raven named Jacob was able to distinguish the number 5 across different tasks in the experiments by Otto Koehler. [5] Later experiments supported the claim of existence of a number sense in birds, with Alex, a grey parrot, able to label and comprehend labels for sets with up to six elements. [24] Other studies suggest that pigeons can also represent numbers up to 6 after an extensive training. [25]

Dogs

A sense of number has also been found in dogs. For example, dogs were able [26] to perform simple additions of two objects, as revealed by their surprise when the result was incorrect. It is however argued that wolves perform better on quantity discrimination tasks than dogs and that this could be a result of a less demanding natural selection for number sense in dogs. [27]

Ants

Ants were shown to be able to count up to 20 and add and subtract numbers within 5. [28] [29] In highly social species such as red wood ants scouting individuals can transfer to foragers the information about the number of branches of a special “counting maze” they had to go to in order to obtain syrup. The findings concerning number sense in ants are based on comparisons of duration of information contacts between scouts and foragers which preceded successful trips by the foraging teams. Similar to some archaic human languages, the length of the code of a given number in ants’ communication is proportional to its value. In experiments in which the bait appeared on different branches with different frequencies, the ants used simple additions and subtractions to optimize their messages.

Wild rodents

Striped field mice ( Apodemus agrarius ) demonstrated a sense of number consistent with precise relative-quantity judgment: some of these mice exhibit high accuracy in discriminating between quantities that differ only by one. The latter include both small (such as 2 versus 3) and relatively large (such as 5 versus 6, and 8 versus 9) quantities of elements. [30]

See also

Related Research Articles

<span class="mw-page-title-main">Comparative psychology</span> Discipline of psychology dedicated to the study of non-human animal behavior

Comparative psychology refers to the scientific study of the behavior and mental processes of non-human animals, especially as these relate to the phylogenetic history, adaptive significance, and development of behavior. The phrase comparative psychology may be employed in a narrow and a broad meaning. In its narrow meaning, it refers to the study of the similarities and differences in the psychology and behavior of different species. In a broader meaning, comparative psychology includes comparisons between different biological and socio-cultural groups, such as species, sexes, developmental stages, ages, and ethnicities. Research in this area addresses many different issues, uses many different methods and explores the behavior of many different species from insects to primates.

<span class="mw-page-title-main">Numeracy</span> Ability to apply numerical concepts

Numeracy is the ability to understand, reason with, and to apply simple numerical concepts. The charity National Numeracy states: "Numeracy means understanding how mathematics is used in the real world and being able to apply it to make the best possible decisions...It’s as much about thinking and reasoning as about 'doing sums'". Basic numeracy skills consist of comprehending fundamental arithmetical operations like addition, subtraction, multiplication, and division. For example, if one can understand simple mathematical equations such as 2 + 2 = 4, then one would be considered to possess at least basic numeric knowledge. Substantial aspects of numeracy also include number sense, operation sense, computation, measurement, geometry, probability and statistics. A numerically literate person can manage and respond to the mathematical demands of life.

<span class="mw-page-title-main">Rhesus macaque</span> Species of Old World monkey

The rhesus macaque, colloquially rhesus monkey, is a species of Old World monkey. There are between six and nine recognised subspecies that are split between two groups, the Chinese-derived and the Indian-derived. Generally brown or grey in colour, it is 47–53 cm (19–21 in) in length with a 20.7–22.9 cm (8.1–9.0 in) tail and weighs 5.3–7.7 kg (12–17 lb). It is native to South, Central, and Southeast Asia and has the widest geographic range of all non-human primates, occupying a great diversity of altitudes and a great variety of habitats, from grasslands to arid and forested areas, but also close to human settlements. Feral colonies are found in the United States, thought to be either released by humans or escapees after hurricanes destroyed zoo and wildlife park facilities.

<span class="mw-page-title-main">Animal cognition</span> Intelligence of non-human animals

Animal cognition encompasses the mental capacities of non-human animals including insect cognition. The study of animal conditioning and learning used in this field was developed from comparative psychology. It has also been strongly influenced by research in ethology, behavioral ecology, and evolutionary psychology; the alternative name cognitive ethology is sometimes used. Many behaviors associated with the term animal intelligence are also subsumed within animal cognition.

Dyscalculia is a disability resulting in difficulty learning or comprehending arithmetic, such as difficulty in understanding numbers, learning how to manipulate numbers, performing mathematical calculations, and learning facts in mathematics. It is sometimes colloquially referred to as "math dyslexia", though this analogy is misleading as they are distinct syndromes.

<span class="mw-page-title-main">Subitizing</span> Assessing the quantity of objects in a visual scene without individually counting each item

Subitizing is the rapid, accurate, and confident judgments of numbers performed for small numbers of items. The term was coined in 1949 by E. L. Kaufman et al., and is derived from the Latin adjective subitus and captures a feeling of immediately knowing how many items lie within the visual scene, when the number of items present falls within the subitizing range. Sets larger than about four items cannot be subitized unless the items appear in a pattern with which the person is familiar. Large, familiar sets might be counted one-by-one. A person could also estimate the number of a large set—a skill similar to, but different from, subitizing.

<span class="mw-page-title-main">Captivity (animal)</span> Animal being held by humans

Animal captivity is the confinement of domestic and wild animals. More specifically, animals that are held by humans and prevented from escaping are said to be in captivity. The term animal captivity is usually applied to wild animals that are held in confinement, but this term may also be used generally to describe the keeping of domesticated animals such as livestock or pets. This may include, for example, animals in farms, private homes, zoos, and laboratories. Animal captivity may be categorized according to the particular motives, objectives, and conditions of the confinement.

In psychology, number sense is the term used for the hypothesis that some animals, particularly humans, have a biologically determined ability that allows them to represent and manipulate large numerical quantities. The term was popularized by Stanislas Dehaene in his 1997 book "The Number Sense".

Numerical cognition is a subdiscipline of cognitive science that studies the cognitive, developmental and neural bases of numbers and mathematics. As with many cognitive science endeavors, this is a highly interdisciplinary topic, and includes researchers in cognitive psychology, developmental psychology, neuroscience and cognitive linguistics. This discipline, although it may interact with questions in the philosophy of mathematics, is primarily concerned with empirical questions.

Ai is a female western chimpanzee, currently living at the Primate Research Institute of Kyoto University. She is the first subject of the Ai project, a research program started in 1978 by Kiyoko Murofushi and Tetsuro Matsuzawa which is aimed at understanding chimpanzee cognition through computer interface experiments.

In human developmental psychology or non-human primate experiments, ordinal numerical competence or ordinal numerical knowledge is the ability to count objects in order and to understand the greater than and less than relationships between numbers. It has been shown that children as young as two can make some ordinal numerical decisions. There are studies indicating that some non-human primates, like chimpanzees and rhesus monkeys have some ordinal numerical competence.

The concept of the evolution of morality refers to the emergence of human moral behavior over the course of human evolution. Morality can be defined as a system of ideas about right and wrong conduct. In everyday life, morality is typically associated with human behavior rather than animal behavior. The emerging fields of evolutionary biology, and in particular evolutionary psychology, have argued that, despite the complexity of human social behaviors, the precursors of human morality can be traced to the behaviors of many other social animals. Sociobiological explanations of human behavior remain controversial. Social scientists have traditionally viewed morality as a construct, and thus as culturally relative, although others such as Sam Harris argue that there is an objective science of morality.

Primate cognition is the study of the intellectual and behavioral skills of non-human primates, particularly in the fields of psychology, behavioral biology, primatology, and anthropology.

The approximate number system (ANS) is a cognitive system that supports the estimation of the magnitude of a group without relying on language or symbols. The ANS is credited with the non-symbolic representation of all numbers greater than four, with lesser values being carried out by the parallel individuation system, or object tracking system. Beginning in early infancy, the ANS allows an individual to detect differences in magnitude between groups. The precision of the ANS improves throughout childhood development and reaches a final adult level of approximately 15% accuracy, meaning an adult could distinguish 100 items versus 115 items without counting. The ANS plays a crucial role in development of other numerical abilities, such as the concept of exact number and simple arithmetic. The precision level of a child's ANS has been shown to predict subsequent mathematical achievement in school. The ANS has been linked to the intraparietal sulcus of the brain.

Dario Maestripieri is an Italian behavioral biologist who is known for his research and writings about biological aspects of behavior in nonhuman primates and humans. He is currently a Professor of Comparative Human Development, Evolutionary Biology, and Neurobiology at The University of Chicago.

Cognitive genomics is the sub-field of genomics pertaining to cognitive function in which the genes and non-coding sequences of an organism's genome related to the health and activity of the brain are studied. By applying comparative genomics, the genomes of multiple species are compared in order to identify genetic and phenotypical differences between species. Observed phenotypical characteristics related to the neurological function include behavior, personality, neuroanatomy, and neuropathology. The theory behind cognitive genomics is based on elements of genetics, evolutionary biology, molecular biology, cognitive psychology, behavioral psychology, and neurophysiology.

<span class="mw-page-title-main">Herbert S. Terrace</span> Professor of Psychology (b. 1936)

Herbert S. Terrace is a professor of Psychology and Psychiatry at Columbia University. His work covers a broad set of research interests that include behaviorism, animal cognition, ape language and the evolution of language. He is the author of Nim: A Chimpanzee Who Learned Sign Language (1979) and Why Chimpanzees Can't Learn Language and Only Humans Can (2019). Terrace has made important contributions to comparative psychology, many of which have important implications for human psychology. These include discrimination learning, ape language, the evolution of language, and animal cognition.

The parallel individuation system, also called object tracking system is a non-symbolic cognitive system that supports the representation of numerical values from zero to three or four. It is one of the two cognitive systems responsible for the representation of number, the other one being the approximate number system. Unlike the approximate number system, which is not precise and provides only an estimation of the number, the parallel individuation system is an exact system and encodes the exact numerical identity of the individual items. The parallel individuation system has been attested in human adults, non-human animals, such as fish and human infants, although performance of infants is dependent on their age and task.

Theory of mind in animals is an extension to non-human animals of the philosophical and psychological concept of theory of mind (ToM), sometimes known as mentalisation or mind-reading. It involves an inquiry into whether non-human animals have the ability to attribute mental states to themselves and others, including recognition that others have mental states that are different from their own. To investigate this issue experimentally, researchers place non-human animals in situations where their resulting behavior can be interpreted as supporting ToM or not.

Inequity aversion in animals is the willingness to sacrifice material pay-offs for the sake of greater equality, something humans tend to do from early age. It manifests itself through negative responses when rewards are not distributed equally between animals. In controlled experiments it has been observed, in varying degrees, in capuchin monkeys, chimpanzees, macaques, marmosets, dogs, wolves, rats, crows and ravens. No evidence of the effect was found in tests with orangutans, owl monkeys, squirrel monkeys, tamarins, kea, and cleaner fish. Due to mixed results in experimental studies it may be that some bonobos, baboons, gibbons, and gorillas are inequity averse. Disadvantageous inequity aversion is most common, that is, the animal protests when it gets a lesser reward than another animal. But advantageous inequity aversion has been observed as well, in chimpanzees, baboons and capuchins: the animal protests when it gets a better reward. Scientists believe that sensitivity to inequity co-evolved with the ability to cooperate, as it helps to sustain benefitting from cooperation.

References

  1. 1 2 3 Hauser, Marc D.; Carey, Susan; Hauser, Lilan B. (2000). "Spontaneous number representation in semi–free–ranging rhesus monkeys". Proceedings of the Royal Society of London B: Biological Sciences. 267 (1445): 829–833. doi:10.1098/rspb.2000.1078. PMC   1690599 . PMID   10819154.
  2. 1 2 3 Dehaene, Stanislas (2011). "The Number Sense: How the mind creates Mathematics". Oxford University Press.{{cite journal}}: Cite journal requires |journal= (help)
  3. Rugani, R.; Vallortigara, G.; Priftis, K.; Regolin, L. (2015-01-30). "Number-space mapping in the newborn chick resembles humans' mental number line". Science. 347 (6221): 534–536. Bibcode:2015Sci...347..534R. doi:10.1126/science.aaa1379. hdl: 11572/123527 . ISSN   0036-8075. PMID   25635096. S2CID   7628051.
  4. Rilling, Mark (1993). "Invisible counting animals: A history of contributions from comparative psychology, ethology, and learning theory". The Development of Numerical Competence: Animal and Human Models: 17. ISBN   9781317783411.
  5. 1 2 Koehler, Otto (1943). ""Zähl"-Versuche an einem Kolkraben und Vergleichsversuche an Menschen". Zeitschrift für Tierpsychologie. 5 (3): 575–712. doi:10.1111/j.1439-0310.1943.tb00665.x.
  6. Mechner, Francis (1958). "Probability relations within response sequences under ratio reinforcement". Journal of the Experimental Analysis of Behavior. 1 (2): 109–121. doi:10.1901/jeab.1958.1-109. PMC   1403928 . PMID   16811206.
  7. 1 2 Platt, John R; Johnson, David M. (1958). "Localization of position within a homogeneous behavior chain: Effects of error contingencies". Learning and Motivation. 2 (4): 386–414. doi:10.1016/0023-9690(71)90020-8.
  8. Church, Russell M.; Meck, Warren H. (1984). "The numerical attribute of stimuli.". In H.L. Roitblat; T.G. Bever; H.S. Terrace (eds.). Animal Cognition. pp.  445–464. ISBN   978-0898593341.
  9. 1 2 3 4 5 Hyde, D. (2011). "Two systems of non-symbolic numerical cognition". Frontiers in Human Neuroscience. 5: 150. doi: 10.3389/fnhum.2011.00150 . PMC   3228256 . PMID   22144955.
  10. Hunt, Simon; Low, Jason; Burns, K. (2008). "Adaptive numerical competency in a food-hoarding songbird". Proceedings of the Royal Society B: Biological Sciences. 275 (1649): 2373–2379. doi:10.1098/rspb.2008.0702. PMC   2603231 . PMID   18611847.
  11. 1 2 3 4 Cantlon, J. F. (2012-06-26). "Math, monkeys, and the developing brain". Proceedings of the National Academy of Sciences. 109 (Supplement 1): 10725–10732. Bibcode:2012PNAS..10910725C. doi: 10.1073/pnas.1201893109 . ISSN   0027-8424. PMC   3386867 . PMID   22723349.
  12. 1 2 3 Núñez, Rafael E. (June 2017). "Is There Really an Evolved Capacity for Number?". Trends in Cognitive Sciences. 21 (6): 409–424. doi:10.1016/j.tics.2017.03.005. ISSN   1364-6613. PMID   28526128. S2CID   4921164.
  13. 1 2 Szkudlarek, Emily; Brannon, Elizabeth M. (2017-04-03). "Does the Approximate Number System Serve as a Foundation for Symbolic Mathematics?". Language Learning and Development. 13 (2): 171–190. doi:10.1080/15475441.2016.1263573. ISSN   1547-5441. PMC   5362122 . PMID   28344520.
  14. 1 2 Cantlon, Jessica F.; Brannon, Elizabeth M. (2007). "How much does number matter to a monkey (Macaca mulatta)?". Journal of Experimental Psychology: Animal Behavior Processes. 33 (1): 32–41. doi:10.1037/0097-7403.33.1.32. ISSN   1939-2184. PMID   17227193.
  15. 1 2 3 Hauser, Marc D.; Carey, Susan; Hauser, Lilan B. (2000-04-22). "Spontaneous number representation in semi–free–ranging rhesus monkeys". Proceedings of the Royal Society of London. Series B: Biological Sciences. 267 (1445): 829–833. doi:10.1098/rspb.2000.1078. PMC   1690599 . PMID   10819154.
  16. 1 2 Beran, Michael J. (2012). "Quantity judgments of auditory and visual stimuli by chimpanzees (Pan troglodytes)". Journal of Experimental Psychology: Animal Behavior Processes. 38 (1): 23–29. doi:10.1037/a0024965. ISSN   1939-2184. PMC   3208030 . PMID   21787100.
  17. Lyons, Ian M.; Beilock, Sian L. (2013-10-23). "Ordinality and the Nature of Symbolic Numbers". The Journal of Neuroscience. 33 (43): 17052–17061. doi:10.1523/JNEUROSCI.1775-13.2013. ISSN   0270-6474. PMC   6618433 . PMID   24155309.
  18. Brannon, Elizabeth M.; Cantlon, Jessica F.; Terrace, Herbert S. (2006). "The role of reference points in ordinal numerical comparisons by rhesus macaques (macaca mulatta)". Journal of Experimental Psychology: Animal Behavior Processes. 32 (2): 120–134. doi:10.1037/0097-7403.32.2.120. ISSN   1939-2184. PMID   16634655.
  19. Feigenson, Lisa; Dehaene, Stanislas; Spelke, Elizabeth (July 2004). "Core systems of number". Trends in Cognitive Sciences. 8 (7): 307–314. doi:10.1016/j.tics.2004.05.002. ISSN   1364-6613. PMID   15242690. S2CID   17313189.
  20. 1 2 Inoue, Sana; Matsuzawa, Tetsuro (December 2007). "Working memory of numerals in chimpanzees". Current Biology. 17 (23): R1004–R1005. doi: 10.1016/j.cub.2007.10.027 . ISSN   0960-9822. PMID   18054758.
  21. Jordan, Kerry E.; Brannon, Elizabeth M.; Logothetis, Nikos K.; Ghazanfar, Asif A. (June 2005). "Monkeys Match the Number of Voices They Hear to the Number of Faces They See". Current Biology. 15 (11): 1034–1038. doi: 10.1016/j.cub.2005.04.056 . ISSN   0960-9822. PMID   15936274.
  22. Agrillo, Christian; Dadda, M; Serena, G; Bisazza, A (2008). "Do fish count? Spontaneous discrimination of quantity in female mosquitofish". Animal Cognition. 11 (3): 495–503. doi:10.1007/s10071-008-0140-9. PMID   18247068. S2CID   22239920.
  23. Agrillo, Christian (2012). "Evidence for Two Numerical Systems That Are Similar in Humans and Guppies". PLOS ONE. 7 (2): e31923. Bibcode:2012PLoSO...731923A. doi: 10.1371/journal.pone.0031923 . PMC   3280231 . PMID   22355405.
  24. Pepperberg, Irene M.; Gordon, Jesse D (2005). "Number comprehension by a grey parrot (Psittacus erithacus), including a zero-like concept". Journal of Comparative Psychology. 119 (2): 197–209. doi:10.1037/0735-7036.119.2.197. PMID   15982163.
  25. Xia, Li; Sieman, Martina; Delius Juan D. (2000). "Matching of numerical symbols with number of responses by pigeons". Animal Cognition. 3: 35–43. doi:10.1007/s100710050048. S2CID   10698665.
  26. West, Rebecca; Rebecca, E; Young, Robert J. (2002). "Do domestic dogs show any evidence of being able to count?". Animal Cognition. 5 (3): 183–186. doi:10.1007/s10071-002-0140-0. PMID   12357291. S2CID   28789165.
  27. Range, Federike; Jenikejew, J; Schröder, I; Virányi, Z (2014). "Difference in quantity discrimination in dogs and wolves". Front. Psychol. 5: 1299. doi: 10.3389/fpsyg.2014.01299 . PMC   4235270 . PMID   25477834.
  28. Reznikova, Zhanna; Ryabko, Boris (2011). "Numerical competence in animals, with an insight from ants". Behaviour. 148 (4): 405–434. CiteSeerX   10.1.1.303.1824 . doi:10.1163/000579511X568562.
  29. Reznikova, Zhanna (2017). Studying Animal Language Without Translation: An Insight From Ants. Switzerland: Springer. doi:10.1007/978-3-319-44918-0. ISBN   978-3-319-44916-6.
  30. Reznikova, Zh; Panteleeva, S; Vorobyeva, N (2019). "Precise relative-quantity judgement in the striped field mouse Apodemus agrarius Pallas". Animal Cognition. 22 (2): 277–289. doi:10.1007/s10071-019-01244-7. PMID   30707366. S2CID   59527877.