Nylon 1,6

Last updated

Nylon 1,6 (aka polyamide 1,6) is a type of polyamide or nylon. [1] Unlike most other nylons, nylon 1,6 is not a condensation polymer, but instead is formed by an acid-catalyzed synthesis from adiponitrile, formaldehyde, and water. The material was produced and studied by researchers at DuPont in the 1950s. [2] Synthesis can be performed at room temperature in open beakers.

Contents

Synthesis of nylon 1,6

Nylon 1,6 is synthesized from adiponitrile, formaldehyde, and water by acid catalysis. Adiponitrile and formaldehyde (aqueous, paraformaldehyde, or trioxane) are combined with an acid (typically sulfuric acid) in a reactor. The reaction can be performed at room temperature. However, the reaction is exothermic, and especially at high ratios of formaldehyde to adiponitrile, cooling may be required.

CH2O + NC-(CH2)4-CN + H2O → [-NH-CH2-NH-OC-(CH2)4-CO-]n

Addition of water to the reaction mixture readily precipitates the nylon 1,6 product, which can then be isolated and washed with water to afford high purity polymer.

Nylon 1,6 Nylon16.png
Nylon 1,6

Properties and applications

The DuPont evaluations of the 1950s era indicated that polyamide-1,6 was less acid stable than nylon 66, and melts over 300–325 °C, with some decomposition. However, films were reported to have been successfully pressed at 275–290 °C. Molecular weight determined to be ~22,000–34,000 via an osmotic pressure method. [3] The polymer was believed to be significantly branched and cross-linked owing to side reactions occurring during the acid catalyzed polymerization, but this was not conclusively established.

Similar to other formaldehyde-based thermoset resins, thermal behavior of the polymer is a function of the CH2O/ADN ratio employed in the synthesis. [4] [5]

Sample of nylon 1,6 Picture of nylon 16 on filter.png
Sample of nylon 1,6

Melting point was found to increase with increasing synthesis CH2O/ADN ratio, along with apparent increase in cross-linking, and reduction in crystallinity. Additionally, spectral features of 1H-NMR of nylon 1,6 samples were found to trend with CH2O/ADN synthesis ratio as well. Collectively, these properties parallel those of other formaldehyde-based thermoset resins, and it is interesting that nylon 1,6 is a rare example of a polyamide thermoset resin rather than a thermoplastic material.

Nylon 1,6 has been reported to exhibit a high moisture absorbance owing to the significant density of amide residues in the polymer, >130% of its weight (compare to ~2–2.5% for nylon 66 and nylon 6).

Related Research Articles

<span class="mw-page-title-main">Nylon</span> Family of synthetic polymers originally developed as textile fibres

Nylon is a generic designation for a family of synthetic polymers composed of polyamides. Nylon is a silk-like thermoplastic, generally made from petroleum, that can be melt-processed into fibers, films, or shapes. Nylon polymers can be mixed with a wide variety of additives to achieve many property variations. Nylon polymers have found significant commercial applications in fabric and fibers, in shapes, and in films.

<span class="mw-page-title-main">Petrochemical</span> Chemical product derived from petroleum

Petrochemicals are the chemical products obtained from petroleum by refining. Some chemical compounds made from petroleum are also obtained from other fossil fuels, such as coal or natural gas, or renewable sources such as maize, palm fruit or sugar cane.

<span class="mw-page-title-main">Phenol formaldehyde resin</span> Chemical compound

Phenol formaldehyde resins (PF) or phenolic resins are synthetic polymers obtained by the reaction of phenol or substituted phenol with formaldehyde. Used as the basis for Bakelite, PFs were the first commercial synthetic resins (plastics). They have been widely used for the production of molded products including billiard balls, laboratory countertops, and as coatings and adhesives. They were at one time the primary material used for the production of circuit boards but have been largely replaced with epoxy resins and fiberglass cloth, as with fire-resistant FR-4 circuit board materials.

A polyamide is a polymer with repeating units linked by amide bonds.

In organic chemistry, a nitrile is any organic compound that has a −C≡N functional group. The prefix cyano- is used interchangeably with the term nitrile in industrial literature. Nitriles are found in many useful compounds, including methyl cyanoacrylate, used in super glue, and nitrile rubber, a nitrile-containing polymer used in latex-free laboratory and medical gloves. Nitrile rubber is also widely used as automotive and other seals since it is resistant to fuels and oils. Organic compounds containing multiple nitrile groups are known as cyanocarbons.

In organic chemistry, hydrocyanation is a process for conversion of alkenes to nitriles. The reaction involves the addition of hydrogen cyanide and requires a catalyst. This conversion is conducted on an industrial scale for the production of precursors to nylon.

<span class="mw-page-title-main">Step-growth polymerization</span>

Step-growth polymerization refers to a type of polymerization mechanism in which bi-functional or multifunctional monomers react to form first dimers, then trimers, longer oligomers and eventually long chain polymers. Many naturally occurring and some synthetic polymers are produced by step-growth polymerization, e.g. polyesters, polyamides, polyurethanes, etc. Due to the nature of the polymerization mechanism, a high extent of reaction is required to achieve high molecular weight. The easiest way to visualize the mechanism of a step-growth polymerization is a group of people reaching out to hold their hands to form a human chain—each person has two hands. There also is the possibility to have more than two reactive sites on a monomer: In this case branched polymers production take place.

<span class="mw-page-title-main">Adiponitrile</span> Chemical compound

Adiponitrile is an organic compound with the chemical formula (CH2)4(CN)2. This viscous, colourless dinitrile is an important precursor to the polymer nylon 66. In 2005, about one million tonnes of adiponitrile were produced.

<span class="mw-page-title-main">Branching (polymer chemistry)</span> Attachment of side chains to the backbone chain of a polymer

In polymer chemistry, branching is the regular or irregular attachment of side chains to a polymer's backbone chain. It occurs by the replacement of a substituent on a monomer subunit by another covalently-bonded chain of that polymer; or, in the case of a graft copolymer, by a chain of another type. Branched polymers have more compact and symmetrical molecular conformations, and exhibit intra-heterogeneous dynamical behavior with respect to the unbranched polymers. In crosslinking rubber by vulcanization, short sulfur branches link polyisoprene chains into a multiple-branched thermosetting elastomer. Rubber can also be so completely vulcanized that it becomes a rigid solid, so hard it can be used as the bit in a smoking pipe. Polycarbonate chains can be crosslinked to form the hardest, most impact-resistant thermosetting plastic, used in safety glasses.

<span class="mw-page-title-main">Polyester</span> Category of polymers, in which the monomers are joined together by ester links

Polyester is a category of polymers that contain the ester functional group in every repeat unit of their main chain. As a specific material, it most commonly refers to a type called polyethylene terephthalate (PET). Polyesters include naturally occurring chemicals, such as in plants and insects, as well as synthetics such as polybutyrate. Natural polyesters and a few synthetic ones are biodegradable, but most synthetic polyesters are not. Synthetic polyesters are used extensively in clothing.

<span class="mw-page-title-main">Furfuryl alcohol</span> Chemical compound

Furfuryl alcohol is an organic compound containing a furan substituted with a hydroxymethyl group. It is a colorless liquid, but aged samples appear amber. It possesses a faint odor of burning and a bitter taste. It is miscible with but unstable in water. It is soluble in common organic solvents.

<span class="mw-page-title-main">Oxazines</span> E heterocyclic organic compounds containing one oxygen and one nitrogen atom

Oxazines are heterocyclic organic compounds containing one oxygen and one nitrogen atom in a cyclohexa-1,4-diene ring. Isomers exist depending on the relative position of the heteroatoms and relative position of the double bonds.

The Letts nitrile synthesis is a chemical reaction of aromatic carboxylic acids with metal thiocyanates to form nitriles. The reaction includes the loss of carbon dioxide and potassium hydrosulfide. The polar basic substitution reaction was discovered in 1872 by Edmund A. Letts.

<span class="mw-page-title-main">Hexamethylenediamine</span> Chemical compound

Hexamethylenediamine is the organic compound with the formula H2N(CH2)6NH2. The molecule is a diamine, consisting of a hexamethylene hydrocarbon chain terminated with amine functional groups. The colorless solid (yellowish for some commercial samples) has a strong amine odor. About 1 billion kilograms are produced annually.

Nylon 66 is a type of polyamide or nylon. It, and nylon 6, are the two most common for textile and plastic industries. Nylon 66 is made of two monomers each containing 6 carbon atoms, hexamethylenediamine and adipic acid, which give nylon 66 its name. Aside from its superior physical characteristics, nylon 66 is attractive because its precursors are inexpensive.

Polymer engineering is generally an engineering field that designs, analyses, and modifies polymer materials. Polymer engineering covers aspects of the petrochemical industry, polymerization, structure and characterization of polymers, properties of polymers, compounding and processing of polymers and description of major polymers, structure property relations and applications.

<i>N</i>,<i>N</i>-Methylenebisacrylamide Chemical compound, polyacrylamide crosslinker

N,N′-Methylenebisacrylamide (MBAm or MBAA) is the organic compound with the formula CH2[NHC(O)CH=CH2]2. A colorless solid, this compound is a crosslinking agent in polyacrylamides, e.g., as used for SDS-PAGE.

A thermoset polymer matrix is a synthetic polymer reinforcement where polymers act as binder or matrix to secure in place incorporated particulates, fibres or other reinforcements. They were first developed for structural applications, such as glass-reinforced plastic radar domes on aircraft and graphite-epoxy payload bay doors on the Space Shuttle.

<span class="mw-page-title-main">2-Methylglutaronitrile</span> Chemical compound

2-Methylglutaronitrile is the organic compound with the formula NCCH2CH2CH(CH3)CN. This dinitrile is obtained in the large-scale synthesis of adiponitrile. It is a colorless liquid with an unpleasant odor. It is the starting compound for the vitamin nicotinamide and for the diester dimethyl-2-methylglutarate and the ester amide methyl 5-(dimethylamino)-2-methyl-5-oxopentanoate, which are promoted as green solvents. 2-Methylglutaronitrile is chiral but is mainly encountered as the racemate.

<span class="mw-page-title-main">Furan resin</span>

Furan resin refers to polymers produced from various furan compounds, of which the most common starting materials are furfuryl alcohol and furfural. In the resin and in the cured polyfurfurol, the furan rings are not connected by conjugation. The resins are generally used as binders for sand castings. The furan monomer is typically converted to a free-flowing resin with mild acid catalysis. Curing is achieved using strong acid.

References

  1. Palmer, Robert J. (2002-01-01). "Polyamides, Plastics". Encyclopedia of Polymer Science and Technology. John Wiley & Sons, Inc. doi:10.1002/0471440264.pst251. ISBN   9780471440260.
  2. Magat, Eugene E.; Faris, Burt F.; Reith, John E.; Salisbury, L. Frank (1951-03-01). "Acid-catalyzed Reactions of Nitriles. I. The Reaction of Nitriles with Formaldehyde1". Journal of the American Chemical Society. 73 (3): 1028–1031. doi:10.1021/ja01147a042. ISSN   0002-7863.
  3. Magat, Eugene E.; Chandler, Leonard B.; Faris, Burt F.; Reith, John E.; Salisbury, L. Frank (1951-03-01). "Acid-catalyzed Reactions of Nitriles. II. Polyamides from Formaldehyde and Dinitriles". Journal of the American Chemical Society. 73 (3): 1031–1035. doi:10.1021/ja01147a043. ISSN   0002-7863.
  4. Que, Zeli; Furuno, Takeshi; Katoh, Sadanobu; Nishino, Yoshihiko (2007-03-01). "Effects of urea–formaldehyde resin mole ratio on the properties of particleboard". Building and Environment. 42 (3): 1257–1263. doi:10.1016/j.buildenv.2005.11.028.
  5. Lenghaus, K; Qiao, G. G; Solomon, D. H (2001-04-01). "The effect of formaldehyde to phenol ratio on the curing and carbonisation behaviour of resole resins". Polymer. 42 (8): 3355–3362. doi:10.1016/S0032-3861(00)00710-2.