This article has multiple issues. Please help improve it or discuss these issues on the talk page . (Learn how and when to remove these messages)
|
OBD-II PIDs (On-board diagnostics Parameter IDs) are codes used to request data from a vehicle, used as a diagnostic tool.
SAE standard J1979 defines many OBD-II PIDs. All on-road vehicles and trucks sold in North America are required to support a subset of these codes, primarily for state mandated emissions inspections. Manufacturers also define additional PIDs specific to their vehicles. Though not mandated, many motorcycles also support OBD-II PIDs.
In 1996, light duty vehicles (less than 8,500 lb or 3,900 kg) were the first to be mandated followed by medium duty vehicles (8,500–14,000 lb or 3,900–6,400 kg) in 2005. [1] They are both required to be accessed through a standardized data link connector defined by SAE J1962.
Heavy duty vehicles (greater than 14,000 lb or 6,400 kg) made after 2010, [1] for sale in the US are allowed to support OBD-II diagnostics through SAE standard J1939-13 (a round diagnostic connector) according to CARB in title 13 CCR 1971.1. Some heavy duty trucks in North America use the SAE J1962 OBD-II diagnostic connector that is common with passenger cars, notably Mack and Volvo Trucks, however they use 29 bit CAN identifiers (unlike 11 bit headers used by passenger cars).
There are 10 diagnostic services described in the latest OBD-II standard SAE J1979. Before 2002, J1979 referred to these services as "modes". They are as follows:
Service / Mode (hex) | Description |
---|---|
01 | Show current data |
02 | Show freeze frame data |
03 | Show stored Diagnostic Trouble Codes |
04 | Clear Diagnostic Trouble Codes and stored values |
05 | Test results, oxygen sensor monitoring (non CAN only) |
06 | Test results, other component/system monitoring (Test results, oxygen sensor monitoring for CAN only) |
07 | Show pending Diagnostic Trouble Codes (detected during current or last driving cycle) |
08 | Control operation of on-board component/system |
09 | Request vehicle information |
0A | Permanent Diagnostic Trouble Codes (DTCs) (Cleared DTCs) |
Vehicle manufacturers are not required to support all services. Each manufacturer may define additional services above #9 (e.g.: service 22 as defined by SAE J2190 for Ford/GM, service 21 for Toyota) for other information e.g. the voltage of the traction battery in a hybrid electric vehicle (HEV). [2]
The nonOBD UDS services start at 0x10 to avoid overlap of ID-range.
The table below shows the standard OBD-II PIDs as defined by SAE J1979. The expected response for each PID is given, along with information on how to translate the response into meaningful data. Again, not all vehicles will support all PIDs and there can be manufacturer-defined custom PIDs that are not defined in the OBD-II standard.
Note that services 01 and 02 are basically identical, except that service 01 provides current information, whereas service 02 provides a snapshot of the same data taken at the point when the last diagnostic trouble code was set. The exceptions are PID 01, which is only available in service 01, and PID 02, which is only available in service 02. If service 02 PID 02 returns zero, then there is no snapshot and all other service 02 data is meaningless.
When using Bit-Encoded-Notation, quantities like C4 means bit 4 from data byte C. Each bit is numbered from 0 to 7, so 7 is the most significant bit and 0 is the least significant bit (See below).
A | B | C | D | ||||||||||||||||||||||||||||
A7 | A6 | A5 | A4 | A3 | A2 | A1 | A0 | B7 | B6 | B5 | B4 | B3 | B2 | B1 | B0 | C7 | C6 | C5 | C4 | C3 | C2 | C1 | C0 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
PIDs (hex) | PID (Dec) | Data bytes returned | Description | Min value | Max value | Units | Formula [a] |
---|---|---|---|---|---|---|---|
00 | 0 | 4 | PIDs supported [$01 - $20] | Bit encoded [A7..D0] == [PID $01..PID $20] See below | |||
01 | 1 | 4 | Monitor status since DTCs cleared. (Includes malfunction indicator lamp (MIL), status and number of DTCs, components tests, DTC readiness checks) | Bit encoded. See below | |||
02 | 2 | 2 | DTC that caused freeze frame to be stored. | Decoded as in service 3 | |||
03 | 3 | 2 | Fuel system status | Bit encoded. See below | |||
04 | 4 | 1 | Calculated engine load | 0 | 100 | % | (or ) |
05 | 5 | 1 | Engine coolant temperature | -40 | 215 | °C | |
06 | 6 | 1 | Short term fuel trim (STFT)—Bank 1 | -100 (Reduce Fuel: Too Rich) | 99.2 (Add Fuel: Too Lean) | % | (or ) |
07 | 7 | 1 | Long term fuel trim (LTFT)—Bank 1 | ||||
08 | 8 | 1 | Short term fuel trim (STFT)—Bank 2 | ||||
09 | 9 | 1 | Long term fuel trim (LTFT)—Bank 2 | ||||
0A | 10 | 1 | Fuel pressure (gauge pressure) | 0 | 765 | kPa | |
0B | 11 | 1 | Intake manifold absolute pressure | 0 | 255 | kPa | |
0C | 12 | 2 | Engine speed | 0 | 16,383.75 | rpm | |
0D | 13 | 1 | Vehicle speed | 0 | 255 | km/h | |
0E | 14 | 1 | Timing advance | -64 | 63.5 | ° before TDC | |
0F | 15 | 1 | Intake air temperature | -40 | 215 | °C | |
10 | 16 | 2 | Mass air flow sensor (MAF) air flow rate | 0 | 655.35 | g/s | |
11 | 17 | 1 | Throttle position | 0 | 100 | % | |
12 | 18 | 1 | Commanded secondary air status | Bit encoded. See below | |||
13 | 19 | 1 | Oxygen sensors present (in 2 banks) | [A0..A3] == Bank 1, Sensors 1-4. [A4..A7] == Bank 2... | |||
14 | 20 | 2 | Oxygen Sensor 1 A: Voltage B: Short term fuel trim | 0 -100 | 1.275 99.2 | V % | (if B==$FF, sensor is not used in trim calculation) |
15 | 21 | 2 | Oxygen Sensor 2 A: Voltage B: Short term fuel trim | ||||
16 | 22 | 2 | Oxygen Sensor 3 A: Voltage B: Short term fuel trim | ||||
17 | 23 | 2 | Oxygen Sensor 4 A: Voltage B: Short term fuel trim | ||||
18 | 24 | 2 | Oxygen Sensor 5 A: Voltage B: Short term fuel trim | ||||
19 | 25 | 2 | Oxygen Sensor 6 A: Voltage B: Short term fuel trim | ||||
1A | 26 | 2 | Oxygen Sensor 7 A: Voltage B: Short term fuel trim | ||||
1B | 27 | 2 | Oxygen Sensor 8 A: Voltage B: Short term fuel trim | ||||
1C | 28 | 1 | OBD standards this vehicle conforms to | 1 | 250 | enumerated. See below | |
1D | 29 | 1 | Oxygen sensors present (in 4 banks) | Similar to PID $13, but [A0..A7] == [B1S1, B1S2, B2S1, B2S2, B3S1, B3S2, B4S1, B4S2] | |||
1E | 30 | 1 | Auxiliary input status | A0 == Power Take Off (PTO) status (1 == active) [A1..A7] not used | |||
1F | 31 | 2 | Run time since engine start | 0 | 65,535 | s | |
20 | 32 | 4 | PIDs supported [$21 - $40] | Bit encoded [A7..D0] == [PID $21..PID $40] See below | |||
21 | 33 | 2 | Distance traveled with malfunction indicator lamp (MIL) on | 0 | 65,535 | km | |
22 | 34 | 2 | Fuel Rail Pressure (relative to manifold vacuum) | 0 | 5177.265 | kPa | |
23 | 35 | 2 | Fuel Rail Gauge Pressure (diesel, or gasoline direct injection) | 0 | 655,350 | kPa | |
24 | 36 | 4 | Oxygen Sensor 1 AB: Air-Fuel Equivalence Ratio (lambda,λ) CD: Voltage | 0 0 | < 2 < 8 | ratio V | |
25 | 37 | 4 | Oxygen Sensor 2 AB: Air-Fuel Equivalence Ratio (lambda,λ) CD: Voltage | ||||
26 | 38 | 4 | Oxygen Sensor 3 AB: Air-Fuel Equivalence Ratio (lambda,λ) CD: Voltage | ||||
27 | 39 | 4 | Oxygen Sensor 4 AB: Air-Fuel Equivalence Ratio (lambda,λ) CD: Voltage | ||||
28 | 40 | 4 | Oxygen Sensor 5 AB: Air-Fuel Equivalence Ratio (lambda,λ) CD: Voltage | ||||
29 | 41 | 4 | Oxygen Sensor 6 AB: Air-Fuel Equivalence Ratio (lambda,λ) CD: Voltage | ||||
2A | 42 | 4 | Oxygen Sensor 7 AB: Air-Fuel Equivalence Ratio (lambda,λ) CD: Voltage | ||||
2B | 43 | 4 | Oxygen Sensor 8 AB: Air-Fuel Equivalence Ratio (lambda,λ) CD: Voltage | ||||
2C | 44 | 1 | Commanded EGR | 0 | 100 | % | |
2D | 45 | 1 | EGR Error | -100 | 99.2 | % | |
2E | 46 | 1 | Commanded evaporative purge | 0 | 100 | % | |
2F | 47 | 1 | Fuel Tank Level Input | 0 | 100 | % | |
30 | 48 | 1 | Warm-ups since codes cleared | 0 | 255 | ||
31 | 49 | 2 | Distance traveled since codes cleared | 0 | 65,535 | km | |
32 | 50 | 2 | Evap. System Vapor Pressure | -8,192 | 8191.75 | Pa | (AB is two's complement signed) [3] |
33 | 51 | 1 | Absolute Barometric Pressure | 0 | 255 | kPa | |
34 | 52 | 4 | Oxygen Sensor 1 AB: Air-Fuel Equivalence Ratio (lambda,λ) CD: Current | 0 -128 | < 2 <128 | ratio mA | |
35 | 53 | 4 | Oxygen Sensor 2 AB: Air-Fuel Equivalence Ratio (lambda,λ) CD: Current | ||||
36 | 54 | 4 | Oxygen Sensor 3 AB: Air-Fuel Equivalence Ratio (lambda,λ) CD: Current | ||||
37 | 55 | 4 | Oxygen Sensor 4 AB: Air-Fuel Equivalence Ratio (lambda,λ) CD: Current | ||||
38 | 56 | 4 | Oxygen Sensor 5 AB: Air-Fuel Equivalence Ratio (lambda,λ) CD: Current | ||||
39 | 57 | 4 | Oxygen Sensor 6 AB: Air-Fuel Equivalence Ratio (lambda,λ) CD: Current | ||||
3A | 58 | 4 | Oxygen Sensor 7 AB: Air-Fuel Equivalence Ratio (lambda,λ) CD: Current | ||||
3B | 59 | 4 | Oxygen Sensor 8 AB: Air-Fuel Equivalence Ratio (lambda,λ) CD: Current | ||||
3C | 60 | 2 | Catalyst Temperature: Bank 1, Sensor 1 | -40 | 6,513.5 | °C | |
3D | 61 | 2 | Catalyst Temperature: Bank 2, Sensor 1 | ||||
3E | 62 | 2 | Catalyst Temperature: Bank 1, Sensor 2 | ||||
3F | 63 | 2 | Catalyst Temperature: Bank 2, Sensor 2 | ||||
40 | 64 | 4 | PIDs supported [$41 - $60] | Bit encoded [A7..D0] == [PID $41..PID $60] See below | |||
41 | 65 | 4 | Monitor status this drive cycle | Bit encoded. See below | |||
42 | 66 | 2 | Control module voltage | 0 | 65.535 | V | |
43 | 67 | 2 | Absolute load value | 0 | 25,700 | % | |
44 | 68 | 2 | Commanded Air-Fuel Equivalence Ratio (lambda,λ) | 0 | < 2 | ratio | |
45 | 69 | 1 | Relative throttle position | 0 | 100 | % | |
46 | 70 | 1 | Ambient air temperature | -40 | 215 | °C | |
47 | 71 | 1 | Absolute throttle position B | 0 | 100 | % | |
48 | 72 | 1 | Absolute throttle position C | ||||
49 | 73 | 1 | Accelerator pedal position D | ||||
4A | 74 | 1 | Accelerator pedal position E | ||||
4B | 75 | 1 | Accelerator pedal position F | ||||
4C | 76 | 1 | Commanded throttle actuator | ||||
4D | 77 | 2 | Time run with MIL on | 0 | 65,535 | min | |
4E | 78 | 2 | Time since trouble codes cleared | ||||
4F | 79 | 4 | Maximum value for Fuel–Air equivalence ratio, oxygen sensor voltage, oxygen sensor current, and intake manifold absolute pressure | 0, 0, 0, 0 | 255, 255, 255, 2550 | ratio, V, mA, kPa | , , , |
50 | 80 | 4 | Maximum value for air flow rate from mass air flow sensor | 0 | 2550 | g/s | ; , , and are reserved for future use |
51 | 81 | 1 | Fuel Type | From fuel type table see below | |||
52 | 82 | 1 | Ethanol fuel % | 0 | 100 | % | |
53 | 83 | 2 | Absolute Evap system Vapor Pressure | 0 | 327.675 | kPa | |
54 | 84 | 2 | Evap system vapor pressure | -32,768 | 32,767 | Pa | (AB is two's complement signed) [3] |
55 | 85 | 2 | Short term secondary oxygen sensor trim, A: bank 1, B: bank 3 | -100 | 99.2 | % | |
56 | 86 | 2 | Long term secondary oxygen sensor trim, A: bank 1, B: bank 3 | ||||
57 | 87 | 2 | Short term secondary oxygen sensor trim, A: bank 2, B: bank 4 | ||||
58 | 88 | 2 | Long term secondary oxygen sensor trim, A: bank 2, B: bank 4 | ||||
59 | 89 | 2 | Fuel rail absolute pressure | 0 | 655,350 | kPa | |
5A | 90 | 1 | Relative accelerator pedal position | 0 | 100 | % | |
5B | 91 | 1 | Hybrid battery pack remaining life | 0 | 100 | % | |
5C | 92 | 1 | Engine oil temperature | -40 | 210 | °C | |
5D | 93 | 2 | Fuel injection timing | -210.00 | 301.992 | ° | |
5E | 94 | 2 | Engine fuel rate | 0 | 3212.75 | L/h | |
5F | 95 | 1 | Emission requirements to which vehicle is designed | Bit Encoded | |||
60 | 96 | 4 | PIDs supported [$61 - $80] | Bit encoded [A7..D0] == [PID $61..PID $80] See below | |||
61 | 97 | 1 | Driver's demand engine - percent torque | -125 | 130 | % | |
62 | 98 | 1 | Actual engine - percent torque | -125 | 130 | % | |
63 | 99 | 2 | Engine reference torque | 0 | 65,535 | N⋅m | |
64 | 100 | 5 | Engine percent torque data | -125 | 130 | % | Idle Engine point 1 Engine point 2 Engine point 3 Engine point 4 |
65 | 101 | 2 | Auxiliary input / output supported | Bit Encoded | |||
66 | 102 | 5 | Mass air flow sensor | 0 | 2047.96875 | g/s | [A0]== Sensor A Supported [A1]== Sensor B Supported Sensor A: Sensor B: |
67 | 103 | 3 | Engine coolant temperature | -40 | 215 | °C | [A0]== Sensor 1 Supported [A1]== Sensor 2 Supported Sensor 1: Sensor 2: |
68 | 104 | 3 | Intake air temperature sensor | -40 | 215 | °C | [A0]== Sensor 1 Supported [A1]== Sensor 2 Supported Sensor 1: Sensor 2: |
69 | 105 | 7 | Actual EGR, Commanded EGR, and EGR Error | ||||
6A | 106 | 5 | Commanded Diesel intake air flow control and relative intake air flow position | ||||
6B | 107 | 5 | Exhaust gas recirculation temperature | ||||
6C | 108 | 5 | Commanded throttle actuator control and relative throttle position | ||||
6D | 109 | 11 | Fuel pressure control system | ||||
6E | 110 | 9 | Injection pressure control system | ||||
6F | 111 | 3 | Turbocharger compressor inlet pressure | ||||
70 | 112 | 10 | Boost pressure control | ||||
71 | 113 | 6 | Variable Geometry turbo (VGT) control | ||||
72 | 114 | 5 | Wastegate control | ||||
73 | 115 | 5 | Exhaust pressure | ||||
74 | 116 | 5 | Turbocharger RPM | ||||
75 | 117 | 7 | Turbocharger temperature | ||||
76 | 118 | 7 | Turbocharger temperature | ||||
77 | 119 | 5 | Charge air cooler temperature (CACT) | ||||
78 | 120 | 9 | Exhaust Gas temperature (EGT) Bank 1 | Special PID. See below | |||
79 | 121 | 9 | Exhaust Gas temperature (EGT) Bank 2 | Special PID. See below | |||
7A | 122 | 7 | Diesel particulate filter (DPF) differential pressure | ||||
7B | 123 | 7 | Diesel particulate filter (DPF) | ||||
7C | 124 | 9 | Diesel Particulate filter (DPF) temperature | °C | |||
7D | 125 | 1 | NOx NTE (Not-To-Exceed) control area status | ||||
7E | 126 | 1 | PM NTE (Not-To-Exceed) control area status | ||||
7F | 127 | 13 | Engine run time [b] | s | |||
80 | 128 | 4 | PIDs supported [$81 - $A0] | Bit encoded [A7..D0] == [PID $81..PID $A0] See below | |||
81 | 129 | 41 | Engine run time for Auxiliary Emissions Control Device(AECD) | ||||
82 | 130 | 41 | Engine run time for Auxiliary Emissions Control Device(AECD) | ||||
83 | 131 | 9 | NOx sensor | ||||
84 | 132 | 1 | Manifold surface temperature | ||||
85 | 133 | 10 | NOx reagent system | % | |||
86 | 134 | 5 | Particulate matter (PM) sensor | ||||
87 | 135 | 5 | Intake manifold absolute pressure | ||||
88 | 136 | 13 | SCR Induce System | ||||
89 | 137 | 41 | Run Time for AECD #11-#15 | ||||
8A | 138 | 41 | Run Time for AECD #16-#20 | ||||
8B | 139 | 7 | Diesel Aftertreatment | ||||
8C | 140 | 17 | O2 Sensor (Wide Range) | ||||
8D | 141 | 1 | Throttle Position G | 0 | 100 | % | |
8E | 142 | 1 | Engine Friction - Percent Torque | -125 | 130 | % | |
8F | 143 | 7 | PM Sensor Bank 1 & 2 | ||||
90 | 144 | 3 | WWH-OBD Vehicle OBD System Information | h | |||
91 | 145 | 5 | WWH-OBD Vehicle OBD System Information | h | |||
92 | 146 | 2 | Fuel System Control | ||||
93 | 147 | 3 | WWH-OBD Vehicle OBD Counters support | h | |||
94 | 148 | 12 | NOx Warning And Inducement System | ||||
98 | 152 | 9 | Exhaust Gas Temperature Sensor | ||||
99 | 153 | 9 | Exhaust Gas Temperature Sensor | ||||
9A | 154 | 6 | Hybrid/EV Vehicle System Data, Battery, Voltage | ||||
9B | 155 | 4 | Diesel Exhaust Fluid Sensor Data | % | |||
9C | 156 | 17 | O2 Sensor Data | ||||
9D | 157 | 4 | Engine Fuel Rate | g/s | |||
9E | 158 | 2 | Engine Exhaust Flow Rate | kg/h | |||
9F | 159 | 9 | Fuel System Percentage Use | ||||
A0 | 160 | 4 | PIDs supported [$A1 - $C0] | Bit encoded [A7..D0] == [PID $A1..PID $C0] See below | |||
A1 | 161 | 9 | NOx Sensor Corrected Data | ppm | |||
A2 | 162 | 2 | Cylinder Fuel Rate | 0 | 2047.96875 | mg/stroke | |
A3 | 163 | 9 | Evap System Vapor Pressure | Pa | |||
A4 | 164 | 4 | Transmission Actual Gear | 0 | 65.535 | ratio | [A1]==Supported |
A5 | 165 | 4 | Commanded Diesel Exhaust Fluid Dosing | 0 | 127.5 | % | [A0]= 1:Supported; 0:Unsupported |
A6 | 166 | 4 | Odometer [c] | 0 | 429,496,729.5 | km | |
A7 | 167 | 4 | NOx Sensor Concentration Sensors 3 and 4 | ||||
A8 | 168 | 4 | NOx Sensor Corrected Concentration Sensors 3 and 4 | ||||
A9 | 169 | 4 | ABS Disable Switch State | [A0]= 1:Supported; 0:Unsupported [B0]= 1:Yes;0:No | |||
C0 | 192 | 4 | PIDs supported [$C1 - $E0] | Bit encoded [A7..D0] == [PID $C1..PID $E0] See below | |||
C3 | 195 | 2 | Fuel Level Input A/B | 0 | 25,700 | % | Returns numerous data, including Drive Condition ID and Engine Speed* |
C4 | 196 | 8 | Exhaust Particulate Control System Diagnostic Time/Count | 0 | 4,294,967,295 | seconds / Count | B5 is Engine Idle Request B6 is Engine Stop Request* First byte = Time in seconds Second byte = Count |
C5 | 197 | 4 | Fuel Pressure A and B | 0 | 5,177 | kPa | |
C6 | 198 | 7 | Byte 1 - Particulate control - driver inducement system status Byte 2,3 - Removal or block of the particulate aftertreatment system counter Byte 4,5 - Liquid regent injection system (e.g. fuel-borne catalyst) failure counter Byte 6,7 - Malfunction of Particulate control monitoring system counter | 0 | 65,535 | h | |
C7 | 199 | 2 | Distance Since Reflash or Module Replacement | 0 | 65,535 | km | |
C8 | 200 | 1 | NOx Control Diagnostic (NCD) and Particulate Control Diagnostic (PCD) Warning Lamp status | - | - | Bit | |
PID (hex) | PID (Dec) | Data bytes returned | Description | Min value | Max value | Units | Formula [a] |
Service 02 accepts the same PIDs as service 01, with the same meaning, [5] but information given is from when the freeze frame [6] was created. Note that PID $02 is used to obtain the DTC that triggered the freeze frame.
A person has to send the frame number in the data section of the message.
PID (hex) | Data bytes returned | Description | Min value | Max value | Units | Formula [a] |
---|---|---|---|---|---|---|
N/A | n*6 | Request trouble codes | 3 codes per message frame. See below |
PID (hex) | Data bytes returned | Description | Min value | Max value | Units | Formula [a] |
---|---|---|---|---|---|---|
N/A | 0 | Clear trouble codes / Malfunction indicator lamp (MIL) / Check engine light | Clears all stored trouble codes and turns the MIL off. |
PID (hex) | Data bytes returned | Description | Min value | Max value | Units | Formula [a] |
---|---|---|---|---|---|---|
0100 | 4 | OBD Monitor IDs supported ($01 – $20) | 0x0 | 0xffffffff | ||
0101 | 2 | O2 Sensor Monitor Bank 1 Sensor 1 | 0.00 | 1.275 | V | 0.005 Rich to lean sensor threshold voltage |
0102 | O2 Sensor Monitor Bank 1 Sensor 2 | 0.00 | 1.275 | V | 0.005 Rich to lean sensor threshold voltage | |
0103 | O2 Sensor Monitor Bank 1 Sensor 3 | 0.00 | 1.275 | V | 0.005 Rich to lean sensor threshold voltage | |
0104 | O2 Sensor Monitor Bank 1 Sensor 4 | 0.00 | 1.275 | V | 0.005 Rich to lean sensor threshold voltage | |
0105 | O2 Sensor Monitor Bank 2 Sensor 1 | 0.00 | 1.275 | V | 0.005 Rich to lean sensor threshold voltage | |
0106 | O2 Sensor Monitor Bank 2 Sensor 2 | 0.00 | 1.275 | V | 0.005 Rich to lean sensor threshold voltage | |
0107 | O2 Sensor Monitor Bank 2 Sensor 3 | 0.00 | 1.275 | V | 0.005 Rich to lean sensor threshold voltage | |
0108 | O2 Sensor Monitor Bank 2 Sensor 4 | 0.00 | 1.275 | V | 0.005 Rich to lean sensor threshold voltage | |
0109 | O2 Sensor Monitor Bank 3 Sensor 1 | 0.00 | 1.275 | V | 0.005 Rich to lean sensor threshold voltage | |
010A | O2 Sensor Monitor Bank 3 Sensor 2 | 0.00 | 1.275 | V | 0.005 Rich to lean sensor threshold voltage | |
010B | O2 Sensor Monitor Bank 3 Sensor 3 | 0.00 | 1.275 | V | 0.005 Rich to lean sensor threshold voltage | |
010C | O2 Sensor Monitor Bank 3 Sensor 4 | 0.00 | 1.275 | V | 0.005 Rich to lean sensor threshold voltage | |
010D | O2 Sensor Monitor Bank 4 Sensor 1 | 0.00 | 1.275 | V | 0.005 Rich to lean sensor threshold voltage | |
010E | O2 Sensor Monitor Bank 4 Sensor 2 | 0.00 | 1.275 | V | 0.005 Rich to lean sensor threshold voltage | |
010F | O2 Sensor Monitor Bank 4 Sensor 3 | 0.00 | 1.275 | V | 0.005 Rich to lean sensor threshold voltage | |
0110 | O2 Sensor Monitor Bank 4 Sensor 4 | 0.00 | 1.275 | V | 0.005 Rich to lean sensor threshold voltage | |
0201 | O2 Sensor Monitor Bank 1 Sensor 1 | 0.00 | 1.275 | V | 0.005 Lean to Rich sensor threshold voltage | |
0202 | O2 Sensor Monitor Bank 1 Sensor 2 | 0.00 | 1.275 | V | 0.005 Lean to Rich sensor threshold voltage | |
0203 | O2 Sensor Monitor Bank 1 Sensor 3 | 0.00 | 1.275 | V | 0.005 Lean to Rich sensor threshold voltage | |
0204 | O2 Sensor Monitor Bank 1 Sensor 4 | 0.00 | 1.275 | V | 0.005 Lean to Rich sensor threshold voltage | |
0205 | O2 Sensor Monitor Bank 2 Sensor 1 | 0.00 | 1.275 | V | 0.005 Lean to Rich sensor threshold voltage | |
0206 | O2 Sensor Monitor Bank 2 Sensor 2 | 0.00 | 1.275 | V | 0.005 Lean to Rich sensor threshold voltage | |
0207 | O2 Sensor Monitor Bank 2 Sensor 3 | 0.00 | 1.275 | V | 0.005 Lean to Rich sensor threshold voltage | |
0208 | O2 Sensor Monitor Bank 2 Sensor 4 | 0.00 | 1.275 | V | 0.005 Lean to Rich sensor threshold voltage | |
0209 | O2 Sensor Monitor Bank 3 Sensor 1 | 0.00 | 1.275 | V | 0.005 Lean to Rich sensor threshold voltage | |
020A | O2 Sensor Monitor Bank 3 Sensor 2 | 0.00 | 1.275 | V | 0.005 Lean to Rich sensor threshold voltage | |
020B | O2 Sensor Monitor Bank 3 Sensor 3 | 0.00 | 1.275 | V | 0.005 Lean to Rich sensor threshold voltage | |
020C | O2 Sensor Monitor Bank 3 Sensor 4 | 0.00 | 1.275 | V | 0.005 Lean to Rich sensor threshold voltage | |
020D | O2 Sensor Monitor Bank 4 Sensor 1 | 0.00 | 1.275 | V | 0.005 Lean to Rich sensor threshold voltage | |
020E | O2 Sensor Monitor Bank 4 Sensor 2 | 0.00 | 1.275 | V | 0.005 Lean to Rich sensor threshold voltage | |
020F | O2 Sensor Monitor Bank 4 Sensor 3 | 0.00 | 1.275 | V | 0.005 Lean to Rich sensor threshold voltage | |
0210 | O2 Sensor Monitor Bank 4 Sensor 4 | 0.00 | 1.275 | V | 0.005 Lean to Rich sensor threshold voltage | |
PID (hex) | Data bytes returned | Description | Min value | Max value | Units | Formula [a] |
PID (hex) | Data bytes returned | Description | Min value | Max value | Units | Formula [a] |
---|---|---|---|---|---|---|
00 | 4 | Service 9 supported PIDs ($01 to $20) | Bit encoded. [A7..D0] = [PID $01..PID $20] See below | |||
01 | 1 | VIN Message Count in PID 02. Only for ISO 9141-2, ISO 14230-4 and SAE J1850. | Usually the value will be 5. | |||
02 | 17 | Vehicle Identification Number (VIN) | 17-char VIN, ASCII-encoded and left-padded with null chars (0x00) if needed to. | |||
03 | 1 | Calibration ID message count for PID 04. Only for ISO 9141-2, ISO 14230-4 and SAE J1850. | It will be a multiple of 4 (4 messages are needed for each ID). | |||
04 | 16,32,48,64.. | Calibration ID | Up to 16 ASCII chars. Data bytes not used will be reported as null bytes (0x00). Several CALID can be outputed (16 bytes each) | |||
05 | 1 | Calibration verification numbers (CVN) message count for PID 06. Only for ISO 9141-2, ISO 14230-4 and SAE J1850. | ||||
06 | 4,8,12,16 | Calibration Verification Numbers (CVN) Several CVN can be output (4 bytes each) the number of CVN and CALID must match | Raw data left-padded with null characters (0x00). Usually displayed as hex string. | |||
07 | 1 | In-use performance tracking message count for PID 08 and 0B. Only for ISO 9141-2, ISO 14230-4 and SAE J1850. | 8 | 10 | 8 if sixteen values are required to be reported, 9 if eighteen values are required to be reported, and 10 if twenty values are required to be reported (one message reports two values, each one consisting in two bytes). | |
08 | 4 | In-use performance tracking for spark ignition vehicles | 4 or 5 messages, each one containing 4 bytes (two values). See below | |||
09 | 1 | ECU name message count for PID 0A | ||||
0A | 20 | ECU name | ASCII-coded. Right-padded with null chars (0x00). | |||
0B | 4 | In-use performance tracking for compression ignition vehicles | 5 messages, each one containing 4 bytes (two values). See below | |||
PID (hex) | Data bytes returned | Description | Min value | Max value | Units | Formula [a] |
0F 19
, A = 0F
and B = 19
. Where a (?) appears, contradictory or incomplete information was available. Some of the PIDs in the above table cannot be explained with a simple formula. A more elaborate explanation of these data is provided here:
A request for this PID returns 4 bytes of data (Big-endian). Each bit, from MSB to LSB, represents one of the next 32 PIDs and specifies whether that PID is supported.
For example, if the car response is BE1FA813, it can be decoded like this:
Hexadecimal | B | E | 1 | F | A | 8 | 1 | 3 | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Binary | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 |
Supported? | Yes | No | Yes | Yes | Yes | Yes | Yes | No | No | No | No | Yes | Yes | Yes | Yes | Yes | Yes | No | Yes | No | Yes | No | No | No | No | No | No | Yes | No | No | Yes | Yes |
PID number | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 0A | 0B | 0C | 0D | 0E | 0F | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 1A | 1B | 1C | 1D | 1E | 1F | 20 |
So, supported PIDs are: 01, 03, 04, 05, 06, 07, 0C, 0D, 0E, 0F, 10, 11, 13, 15, 1C, 1F and 20
A request for this PID returns 4 bytes of data, labeled A, B, C and D.
The first byte (A) contains two pieces of information. Bit A7 (MSB of byte A) indicates whether or not the MIL (malfunction indicator light, aka. check engine light) is illuminated. Bits A6 through A0 represent the number of diagnostic trouble codes currently flagged in the ECU.
The second, third, and fourth bytes (B, C and D) give information about the availability and completeness of certain on-board tests ("OBD readiness checks"). The third and fourth bytes are to be interpreted differently depending upon whether the engine is spark ignition (e.g. Otto or Wankel engines) or compression ignition (e.g. Diesel engines). In the second byte (B), bit 3 indicates the engine type and thus how to interpret bytes C and D, with 0 being spark (Otto or Wankel) and 1 (set) being compression (Diesel). Bits B6 to B4 and B2 to B0 are used for information about tests that not engine-type specific, and thus termed common tests. Note that for bits indicating test availability a bit set to 1 indicates available, whilst for bits indicating test completeness a bit set to 0 indicates complete.
Bits | Definition |
---|---|
A7 | State of the CEL/MIL (on/off). |
A6-A0 | Number of confirmed emissions-related DTCs available for display. |
B7 | Reserved (should be 0) |
B6-B4 | Bitmap indicating completeness of common tests. |
B3 | Indication of engine type 0 = Spark ignition (e.g. Otto or Wankel engines) 1 = Compression ignition (e.g. Diesel engines) |
B2-B0 | Bitmap indicating availability of common tests. |
C7-C0 | Bitmap indicating availability of engine-type specific tests. |
D7-D0 | Bitmap indicating completeness of engine-type specific tests. |
Bits from byte B representing common test indicators (those not engine-type specific) are mapped as follows:
Test availability | Test completeness | |
---|---|---|
Components | B2 | B6 |
Fuel System | B1 | B5 |
Misfire | B0 | B4 |
Bytes C and D are mapped as follows for spark ignition engine types (e.g. Otto or Wankel engines):
Test availability | Test completeness | |
---|---|---|
EGR and/or VVT System | C7 | D7 |
Oxygen Sensor Heater | C6 | D6 |
Oxygen Sensor | C5 | D5 |
Gasoline Particulate Filter [a] | C4 | D4 |
Secondary Air System | C3 | D3 |
Evaporative System | C2 | D2 |
Heated Catalyst | C1 | D1 |
Catalyst | C0 | D0 |
Bytes C and D are alternatively mapped as follows for compression ignition engine types (Diesel engines):
Test availability | Test completeness | |
---|---|---|
EGR and/or VVT System | C7 | D7 |
PM filter monitoring | C6 | D6 |
Exhaust Gas Sensor | C5 | D5 |
- Reserved - | C4 | D4 |
Boost Pressure | C3 | D3 |
- Reserved - | C2 | D2 |
NOx/SCR Monitor | C1 | D1 |
NMHC Catalyst [b] | C0 | D0 |
A request for this PID returns 4 bytes of data. The data returned is of an identical form to that returned for PID 01, with one exception - the first byte is always zero.
A request for one of these two PIDs will return 9 bytes of data. PID 78 returns data relating to EGT sensors for bank 1, whilst PID 79 similarly returns data for bank 2. The first byte is a bit encoded field indicating which EGT sensors are supported for the respective bank.
Bytes | Description |
---|---|
A | EGT sensor support |
B-C | Temperature read by EGT sensor 1 |
D-E | Temperature read by EGT sensor 2 |
F-G | Temperature read by EGT sensor 3 |
H-I | Temperature read by EGT sensor 4 |
The first byte is bit-encoded as follows:
Bits | Description |
---|---|
A7-A4 | Reserved |
A3 | EGT sensor 4 supported? |
A2 | EGT sensor 3 supported? |
A1 | EGT sensor 2 supported? |
A0 | EGT sensor 1 supported? |
Bytes B through I provide 16-bit integers indicating the temperatures of the sensors. The temperature values are interpreted in degrees Celsius in the range -40 to 6513.5 (scale 0.1), using the usual formula (MSB is A, LSB is B). Only values for which the corresponding sensor is supported are meaningful.
A request for this service returns a list of the DTCs that have been set. The list is encapsulated using the ISO 15765-2 protocol.
If there are two or fewer DTCs (up to 4 bytes) then they are returned in an ISO-TP Single Frame (SF). Three or more DTCs in the list are reported in multiple frames, with the exact count of frames dependent on the communication type and addressing details.
Each trouble code requires 2 bytes to describe. Encoded in these bytes are a category and a number. It is typically shown decoded into a five-character form like "U0158", where the first character (here 'U') represents the category the DTC belongs to, and the remaining four characters are a hexadecimal representation of the number under that category. The first two bits (A7 and A6) of the first byte (A) represent the category. The remaining 14 bits represent the number. Of note is that since the second character is formed from only two bits, it can thus only be within the range 0-3.
Bits | Definition |
---|---|
A7-A6 | Category 00: P - Powertrain 01: C - Chassis 10: B - Body 11: U - Network [a] |
A5-B0 | Number (within category) |
An example DTC of "U0158" would be decoded as follows:
Bit | A7 | A6 | A5 | A4 | A3 | A2 | A1 | A0 | B7 | B6 | B5 | B4 | B3 | B2 | B1 | B0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Binary | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 |
Hexadecimal | C | 1 | 5 | 8 | ||||||||||||
Decoded DTC | U | 0 | 1 | 5 | 8 |
The resulting five-character code, e.g. "U0158", can be looked up in a table of OBD-II DTCs to get an actual description of what it represents. Of note, whilst some blocks of DTC code ranges have generic meanings that apply to all vehicles and manufacturers, the meanings of others can vary per manufacturer or even model.
It is also worth noting that DTCs may sometimes be encountered in a four-character form, e.g. "C158", which is simply the plain hexadecimal representation of the two bytes, with proper decoding with respect to the category not having been performed.
It provides information about track in-use performance for catalyst banks, oxygen sensor banks, evaporative leak detection systems, EGR systems and secondary air system.
The numerator for each component or system tracks the number of times that all conditions necessary for a specific monitor to detect a malfunction have been encountered. The denominator for each component or system tracks the number of times that the vehicle has been operated in the specified conditions.
The count of data items should be reported at the beginning (the first byte).
All data items of the In-use Performance Tracking record consist of two bytes and are reported in this order (each message contains two items, hence the message length is 4).
Mnemonic | Description |
---|---|
OBDCOND | OBD Monitoring Conditions Encountered Counts |
IGNCNTR | Ignition Counter |
CATCOMP1 | Catalyst Monitor Completion Counts Bank 1 |
CATCOND1 | Catalyst Monitor Conditions Encountered Counts Bank 1 |
CATCOMP2 | Catalyst Monitor Completion Counts Bank 2 |
CATCOND2 | Catalyst Monitor Conditions Encountered Counts Bank 2 |
O2SCOMP1 | O2 Sensor Monitor Completion Counts Bank 1 |
O2SCOND1 | O2 Sensor Monitor Conditions Encountered Counts Bank 1 |
O2SCOMP2 | O2 Sensor Monitor Completion Counts Bank 2 |
O2SCOND2 | O2 Sensor Monitor Conditions Encountered Counts Bank 2 |
EGRCOMP | EGR Monitor Completion Condition Counts |
EGRCOND | EGR Monitor Conditions Encountered Counts |
AIRCOMP | AIR Monitor Completion Condition Counts (Secondary Air) |
AIRCOND | AIR Monitor Conditions Encountered Counts (Secondary Air) |
EVAPCOMP | EVAP Monitor Completion Condition Counts |
EVAPCOND | EVAP Monitor Conditions Encountered Counts |
SO2SCOMP1 | Secondary O2 Sensor Monitor Completion Counts Bank 1 |
SO2SCOND1 | Secondary O2 Sensor Monitor Conditions Encountered Counts Bank 1 |
SO2SCOMP2 | Secondary O2 Sensor Monitor Completion Counts Bank 2 |
SO2SCOND2 | Secondary O2 Sensor Monitor Conditions Encountered Counts Bank 2 |
It provides information about track in-use performance for NMHC catalyst, NOx catalyst monitor, NOx adsorber monitor, PM filter monitor, exhaust gas sensor monitor, EGR/ VVT monitor, boost pressure monitor and fuel system monitor.
All data items consist of two bytes and are reported in this order (each message contains two items, hence message length is 4):
Mnemonic | Description |
---|---|
OBDCOND | OBD Monitoring Conditions Encountered Counts |
IGNCNTR | Ignition Counter |
HCCATCOMP | NMHC Catalyst Monitor Completion Condition Counts |
HCCATCOND | NMHC Catalyst Monitor Conditions Encountered Counts |
NCATCOMP | NOx/SCR Catalyst Monitor Completion Condition Counts |
NCATCOND | NOx/SCR Catalyst Monitor Conditions Encountered Counts |
NADSCOMP | NOx Adsorber Monitor Completion Condition Counts |
NADSCOND | NOx Adsorber Monitor Conditions Encountered Counts |
PMCOMP | PM Filter Monitor Completion Condition Counts |
PMCOND | PM Filter Monitor Conditions Encountered Counts |
EGSCOMP | Exhaust Gas Sensor Monitor Completion Condition Counts |
EGSCOND | Exhaust Gas Sensor Monitor Conditions Encountered Counts |
EGRCOMP | EGR and/or VVT Monitor Completion Condition Counts |
EGRCOND | EGR and/or VVT Monitor Conditions Encountered Counts |
BPCOMP | Boost Pressure Monitor Completion Condition Counts |
BPCOND | Boost Pressure Monitor Conditions Encountered Counts |
FUELCOMP | Fuel Monitor Completion Condition Counts |
FUELCOND | Fuel Monitor Conditions Encountered Counts |
Some PIDs are to be interpreted specially, and aren't necessarily exactly bitwise encoded, or in any scale. The values for these PIDs are enumerated.
A request for this PID returns 2 bytes of data. The first byte describes fuel system #1. The second byte describes fuel system #2 (if it exists) and is encoded identically to the first byte. The meaning assigned to the value of each byte is as follows:
Value | Description |
---|---|
0 | The motor is off |
1 | Open loop due to insufficient engine temperature |
2 | Closed loop, using oxygen sensor feedback to determine fuel mix |
4 | Open loop due to engine load OR fuel cut due to deceleration |
8 | Open loop due to system failure |
16 | Closed loop, using at least one oxygen sensor but there is a fault in the feedback system |
Any other value is an invalid response.
A request for this PID returns a single byte of data which describes the secondary air status.
Value | Description |
---|---|
1 | Upstream |
2 | Downstream of catalytic converter |
4 | From the outside atmosphere or off |
8 | Pump commanded on for diagnostics |
Any other value is an invalid response.
A request for this PID returns a single byte of data which describes which OBD standards this ECU was designed to comply with. The different values the data byte can hold are shown below, next to what they mean:
Value | Description |
---|---|
1 | OBD-II as defined by the CARB |
2 | OBD as defined by the EPA |
3 | OBD and OBD-II |
4 | OBD-I |
5 | Not OBD compliant |
6 | EOBD (Europe) |
7 | EOBD and OBD-II |
8 | EOBD and OBD |
9 | EOBD, OBD and OBD II |
10 | JOBD (Japan) |
11 | JOBD and OBD II |
12 | JOBD and EOBD |
13 | JOBD, EOBD, and OBD II |
14 | Reserved |
15 | Reserved |
16 | Reserved |
17 | Engine Manufacturer Diagnostics (EMD) |
18 | Engine Manufacturer Diagnostics Enhanced (EMD+) |
19 | Heavy Duty On-Board Diagnostics (Child/Partial) (HD OBD-C) |
20 | Heavy Duty On-Board Diagnostics (HD OBD) |
21 | World Wide Harmonized OBD (WWH OBD) |
22 | Reserved |
23 | Heavy Duty Euro OBD Stage I without NOx control (HD EOBD-I) |
24 | Heavy Duty Euro OBD Stage I with NOx control (HD EOBD-I N) |
25 | Heavy Duty Euro OBD Stage II without NOx control (HD EOBD-II) |
26 | Heavy Duty Euro OBD Stage II with NOx control (HD EOBD-II N) |
27 | Reserved |
28 | Brazil OBD Phase 1 (OBDBr-1) |
29 | Brazil OBD Phase 2 (OBDBr-2) |
30 | Korean OBD (KOBD) |
31 | India OBD I (IOBD I) |
32 | India OBD II (IOBD II) |
33 | Heavy Duty Euro OBD Stage VI (HD EOBD-IV) |
34-250 | Reserved |
251-255 | Not available for assignment (SAE J1939 special meaning) |
This PID returns a value from an enumerated list giving the fuel type of the vehicle. The fuel type is returned as a single byte, and the value is given by the following table:
Value | Description |
---|---|
0 | Not available |
1 | Gasoline |
2 | Methanol |
3 | Ethanol |
4 | Diesel |
5 | LPG |
6 | CNG |
7 | Propane |
8 | Electric |
9 | Bifuel running Gasoline |
10 | Bifuel running Methanol |
11 | Bifuel running Ethanol |
12 | Bifuel running LPG |
13 | Bifuel running CNG |
14 | Bifuel running Propane |
15 | Bifuel running Electricity |
16 | Bifuel running electric and combustion engine |
17 | Hybrid gasoline |
18 | Hybrid Ethanol |
19 | Hybrid Diesel |
20 | Hybrid Electric |
21 | Hybrid running electric and combustion engine |
22 | Hybrid Regenerative |
23 | Bifuel running diesel |
Any other value is reserved by ISO/SAE. There are currently no definitions for flexible-fuel vehicle.
The majority of all OBD-II PIDs in use are non-standard. For most modern vehicles, there are many more functions supported on the OBD-II interface than are covered by the standard PIDs, and there is relatively minor overlap between vehicle manufacturers for these non-standard PIDs.
There is very limited information available in the public domain for non-standard PIDs. The primary source of information on non-standard PIDs across different manufacturers is maintained by the US-based Equipment and Tool Institute and only available to members. The price of ETI membership for access to scan codes varies based on company size defined by annual sales of automotive tools and equipment in North America:
Annual Sales in North America | Annual Dues |
---|---|
Under $10,000,000 | $5,000 |
$10,000,000 - $50,000,000 | $7,500 |
Greater than $50,000,000 | $10,000 |
However, even ETI membership will not provide full documentation for non-standard PIDs. ETI states: [7] [8]
Some OEMs refuse to use ETI as a one-stop source of scan tool information. They prefer to do business with each tool company separately. These companies also require that you enter into a contract with them. The charges vary but here is a snapshot as of April 13th, 2015 of the per year charges:
GM $50,000 Honda $5,000 Suzuki $1,000 BMW $25,500 plus $2,000 per update. Updates occur annually.
As defined in ISO 15765-4, emissions protocols (including OBD-II, EOBD, UDS, etc.) use the ISO-TP transport layer (ISO 15765-2). All CAN frames sent using ISO-TP use a data length of 8 bytes (and DLC of 8). It is recommended to pad the unused data bytes with 0xCC.
The PID query and response occurs on the vehicle's CAN bus. Standard OBD requests and responses use functional addresses. The diagnostic reader initiates a query using CAN ID 7DFh, which acts as a broadcast address, and accepts responses from any ID in the range 7E8h to 7EFh. ECUs that can respond to OBD queries listen both to the functional broadcast ID of 7DFh and one assigned ID in the range 7E0h to 7E7h. Their response has an ID of their assigned ID plus 8 e.g. 7E8h through 7EFh.
This approach allows up to eight ECUs, each independently responding to OBD queries. The diagnostic reader can use the ID in the ECU response frame to continue communication with a specific ECU. In particular, multi-frame communication requires a response to the specific ECU ID rather than to ID 7DFh.
CAN bus may also be used for communication beyond the standard OBD messages. Physical addressing uses particular CAN IDs for specific modules (e.g., 720h for the instrument cluster in Fords) with proprietary frame payloads.
The functional PID query is sent to the vehicle on the CAN bus at ID 7DFh, using 8 data bytes. The bytes are:
Byte | ||||||||
---|---|---|---|---|---|---|---|---|
PID Type | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
SAE Standard | Number of additional data bytes: 2 | Service 01 = show current data; 02 = freeze frame; etc. | PID code (e.g.: 05 = Engine coolant temperature) | not used (ISO 15765-2 suggests CCh) | ||||
Vehicle specific | Number of additional data bytes: 3 | Custom service: (e.g.: 22 = enhanced data) | PID code (e.g.: 4980h) | not used (ISO 15765-2 suggests CCh) |
The vehicle responds to the PID query on the CAN bus with message IDs that depend on which module responded. Typically the engine or main ECU responds at ID 7E8h. Other modules, like the hybrid controller or battery controller in a Prius, respond at 07E9h, 07EAh, 07EBh, etc. These are 8h higher than the physical address the module responds to. Even though the number of bytes in the returned value is variable, the message uses 8 data bytes regardless (CAN bus protocol form Frameformat with 8 data bytes). The bytes are:
Byte | ||||||||
---|---|---|---|---|---|---|---|---|
CAN Address | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
SAE Standard 7E8h, 7E9h, 7EAh, etc. | Number of additional data bytes: 3 to 6 | Custom service Same as query, except that 40h is added to the service value. So: 41h = show current data; 42h = freeze frame; etc. | PID code (e.g.: 05 = Engine coolant temperature) | value of the specified parameter, byte 0 | value, byte 1 (optional) | value, byte 2 (optional) | value, byte 3 (optional) | not used (may be 00h or 55h) |
Vehicle specific 7E8h, or 8h + physical ID of module. | Number of additional data bytes: 4to 7 | Custom service: same as query, except that 40h is added to the service value.(e.g.: 62h = response to service 22h request) | PID code (e.g.: 4980h) | value of the specified parameter, byte 0 | value, byte 1 (optional) | value, byte 2 (optional) | value, byte 3 (optional) | |
Vehicle specific 7E8h, or 8h + physical ID of module. | Number of additional data bytes: 3 | 7Fh this a general response usually indicating the module doesn't recognize the request. | Custom service: (e.g.: 22h = enhanced diagnostic data by PID, 21h = enhanced data by offset) | 31h | not used (may be 00h) |
A controller area network (CAN) is a vehicle bus standard designed to enable efficient communication primarily between electronic control units (ECUs). Originally developed to reduce the complexity and cost of electrical wiring in automobiles through multiplexing, the CAN bus protocol has since been adopted in various other contexts. This broadcast-based, message-oriented protocol ensures data integrity and prioritization through a process called arbitration, allowing the highest priority device to continue transmitting if multiple devices attempt to send data simultaneously, while others back off. Its reliability is enhanced by differential signaling, which mitigates electrical noise. Common versions of the CAN protocol include CAN 2.0, CAN FD, and CAN XL which vary in their data rate capabilities and maximum data payload sizes.
A vehicle bus is a specialized internal communications network that interconnects components inside a vehicle. In electronics, a bus is simply a device that connects multiple electrical or electronic devices together. Special requirements for vehicle control such as assurance of message delivery, of non-conflicting messages, of minimum time of delivery, of low cost, and of EMF noise resilience, as well as redundant routing and other characteristics mandate the use of less common networking protocols. Protocols include Controller Area Network (CAN), Local Interconnect Network (LIN) and others. Conventional computer networking technologies are rarely used, except in aircraft, where implementations of the ARINC 664 such as the Avionics Full-Duplex Switched Ethernet are used. Aircraft that use Avionics Full-Duplex Switched Ethernet (AFDX) include the Boeing 787, the Airbus A400M and the Airbus A380. Trains commonly use Ethernet Consist Network (ECN). All cars sold in the United States since 1996 are required to have an On-Board Diagnostics connector, for access to the car's electronic controllers.
Society of Automotive Engineers standard SAE J1939 is the vehicle bus recommended practice used for communication and diagnostics among vehicle components. Originating in the car and heavy-duty truck industry in the United States, it is now widely used in other parts of the world.
LIN is a network protocol used for communication between components in modern vehicles. It is a low-cost single-wire serial protocol that supports communications up to 19.2 Kbit/s with a maximum bus length of 40 metres (131.2 ft).
A data logger is an electronic device that records data over time or about location either with a built-in instrument or sensor or via external instruments and sensors. Increasingly, but not entirely, they are based on a digital processor, and called digital data loggers (DDL). They generally are small, battery-powered, portable, and equipped with a microprocessor, internal memory for data storage, and sensors. Some data loggers interface with a personal computer and use software to activate the data logger and view and analyze the collected data, while others have a local interface device and can be used as a stand-alone device.
On-board diagnostics (OBD) is a term referring to a vehicle's self-diagnostic and reporting capability. In the United States, this capability is a requirement to comply with federal emissions standards to detect failures that may increase the vehicle tailpipe emissions to more than 150% of the standard to which it was originally certified.
The manifold absolute pressure sensor is one of the sensors used in an internal combustion engine's electronic control system.
Motronic is the trade name given to a range of digital engine control units developed by Robert Bosch GmbH which combined control of fuel injection and ignition in a single unit. By controlling both major systems in a single unit, many aspects of the engine's characteristics can be improved.
Renix was a joint venture by Renault and Bendix that designed and manufactured automobile electronic ignitions, fuel injection systems, electronic automatic transmission controls, and various engine sensors. Major applications included various Renault and Volvo vehicles. The name became synonymous in the U.S. with the computer and fuel injection system used on the AMC/Jeep 2.5 L I4 and 4.0 L I6 engines.
VCDS is a Microsoft Windows-based software package, developed and produced by Ross-Tech, LLC since May 2000. It is primarily used for diagnostics and adjustments of Volkswagen Group motor vehicles, including Volkswagen Passenger Cars, Audi, Bentley (limited), Lamborghini (limited), SEAT, and Škoda automobiles, along with Volkswagen Commercial Vehicles.
Digifant is an Engine Management System operated by an Engine Control Unit that actuates outputs, such as fuel injection and ignition systems, using information derived from sensor inputs, such as engine speed, exhaust oxygen and intake air flow. Digifant was designed by Volkswagen Group, in cooperation with Robert Bosch GmbH.
Society of Automotive Engineers standard SAE J1708 is a standard used for serial communications between ECUs on a heavy duty vehicle and also between a computer and the vehicle. With respect to Open System Interconnection model (OSI), J1708 defines the physical layer. Common higher layer protocols that operate on top of J1708 are SAE J1587 and SAE J1922. The protocol is maintained by SAE International.
OBDuino is an open source trip computer design based on the Arduino platform. An OBDuino may be assembled and customised by an electronics hobbyist; it displays information such as instantaneous fuel economy, engine tuning parameters etc. on an LCD.
ISO 15765-2, or ISO-TP (Transport Layer), is an international standard for sending data packets over a CAN-Bus. The protocol allows for the transport of messages that exceed the eight byte maximum payload of CAN frames. ISO-TP segments longer messages into multiple frames, adding metadata (CAN-TP Header) that allows the interpretation of individual frames and reassembly into a complete message packet by the recipient. It can carry up to 232-1 (4294967295) bytes of payload per message packet starting from the 2016 version. Prior version were limited to a maximum payload size of 4095 bytes.
The Lucas 14CUX is an automotive electronic fuel injection system developed by Lucas Industries and fitted to the Rover V8 engine in Land Rover vehicles between 1990 and 1995. The system was also paired with the Rover V8 by a number of low-volume manufacturers such as TVR, Marcos, Ginetta, and Morgan.
An automotive scan tool (scanner) is an electronic tool used to interface with, diagnose and, sometimes, reprogram vehicle control modules.
The ELM327 is a programmed microcontroller produced for translating the on-board diagnostics (OBD) interface found in most modern cars. The ELM327 command protocol is one of the most popular PC-to-OBD interface standards and is also implemented by other vendors.
OpenXC is a hardware and software API for automobiles developed by Ford Bug Labs and proposed as an open standard.
Unified Diagnostic Services (UDS) is a diagnostic communication protocol used in electronic control units (ECUs) within automotive electronics, which is specified in the ISO 14229-1. It is derived from ISO 14230-3 (KWP2000) and the now obsolete ISO 15765-3. 'Unified' in this context means that it is an international and not a company-specific standard. By now this communication protocol is used in all new ECUs made by Tier 1 suppliers of original equipment manufacturer (OEM), and is incorporated into other standards, such as AUTOSAR. The ECUs in modern vehicles control nearly all functions, including electronic fuel injection (EFI), engine control, the transmission, anti-lock braking system, door locks, braking, window operation, and more.
CAN FD is a data-communication protocol used for broadcasting sensor data and control information on 2 wire interconnections between different parts of electronic instrumentation and control system. This protocol is used in modern high performance vehicles.