Oberwolfach problem

Last updated
Unsolved problem in mathematics:

For which 2-regular -vertex graphs can the complete graph be decomposed into edge-disjoint copies of ?

Contents

Decomposition of the complete graph
K
7
{\displaystyle K_{7}}
into three copies of
C
3
+
C
4
{\displaystyle C_{3}+C_{4}}
, solving the Oberwolfach problem for the input
(
3
,
4
)
{\displaystyle (3,4)} Oberwolfach-3-4.svg
Decomposition of the complete graph into three copies of , solving the Oberwolfach problem for the input

The Oberwolfach problem is an unsolved problem in mathematics that may be formulated either as a problem of scheduling seating assignments for diners, or more abstractly as a problem in graph theory, on the edge cycle covers of complete graphs. It is named after the Oberwolfach Research Institute for Mathematics, where the problem was posed in 1967 by Gerhard Ringel. [1] It is known to be true for all sufficiently-large complete graphs.

Formulation

In conferences held at Oberwolfach, it is the custom for the participants to dine together in a room with circular tables, not all the same size, and with assigned seating that rearranges the participants from meal to meal. The Oberwolfach problem asks how to make a seating chart for a given set of tables so that all tables are full at each meal and all pairs of conference participants are seated next to each other exactly once. An instance of the problem can be denoted as where are the given table sizes. Alternatively, when some table sizes are repeated, they may be denoted using exponential notation; for instance, describes an instance with three tables of size five. [1]

Formulated as a problem in graph theory, the pairs of people sitting next to each other at a single meal can be represented as a disjoint union of cycle graphs of the specified lengths, with one cycle for each of the dining tables. This union of cycles is a 2-regular graph, and every 2-regular graph has this form. If is this 2-regular graph and has vertices, the question is whether the complete graph of order can be represented as an edge-disjoint union of copies of . [1]

In order for a solution to exist, the total number of conference participants (or equivalently, the total capacity of the tables, or the total number of vertices of the given cycle graphs) must be an odd number. For, at each meal, each participant sits next to two neighbors, so the total number of neighbors of each participant must be even, and this is only possible when the total number of participants is odd. The problem has, however, also been extended to even values of by asking, for those , whether all of the edges of the complete graph except for a perfect matching can be covered by copies of the given 2-regular graph. Like the ménage problem (a different mathematical problem involving seating arrangements of diners and tables), this variant of the problem can be formulated by supposing that the diners are arranged into married couples, and that the seating arrangements should place each diner next to each other diner except their own spouse exactly once. [2]

Known results

The only instances of the Oberwolfach problem that are known not to be solvable are , , , and . [3] It is widely believed that all other instances have a solution. This conjecture is supported by recent non-constructive and asymptotic solutions for large complete graphs of order greater than a lower bound that is however unquantified. [4] [5]

Cases for which a constructive solution is known include:

Kirkman's schoolgirl problem, of grouping fifteen schoolgirls into rows of three in seven different ways so that each pair of girls appears once in each triple, is a special case of the Oberwolfach problem, . The problem of Hamiltonian decomposition of a complete graph is another special case, . [10]

Alspach's conjecture, on the decomposition of a complete graph into cycles of given sizes, is related to the Oberwolfach problem, but neither is a special case of the other. If is a 2-regular graph, with vertices, formed from a disjoint union of cycles of certain lengths, then a solution to the Oberwolfach problem for would also provide a decomposition of the complete graph into copies of each of the cycles of . However, not every decomposition of into this many cycles of each size can be grouped into disjoint cycles that form copies of , and on the other hand not every instance of Alspach's conjecture involves sets of cycles that have copies of each cycle.

Related Research Articles

In combinatorics, a branch of mathematics, a matroid is a structure that abstracts and generalizes the notion of linear independence in vector spaces. There are many equivalent ways to define a matroid axiomatically, the most significant being in terms of: independent sets; bases or circuits; rank functions; closure operators; and closed sets or flats. In the language of partially ordered sets, a finite matroid is equivalent to a geometric lattice.

In mathematics, in the areas of order theory and combinatorics, Dilworth's theorem characterizes the width of any finite partially ordered set in terms of a partition of the order into a minimum number of chains. It is named for the mathematician Robert P. Dilworth (1950).

<span class="mw-page-title-main">Cograph</span> Graph formed by complementation and disjoint union

In graph theory, a cograph, or complement-reducible graph, or P4-free graph, is a graph that can be generated from the single-vertex graph K1 by complementation and disjoint union. That is, the family of cographs is the smallest class of graphs that includes K1 and is closed under complementation and disjoint union.

<span class="mw-page-title-main">Hadwiger conjecture (graph theory)</span>

In graph theory, the Hadwiger conjecture states that if is loopless and has no minor then its chromatic number satisfies . It is known to be true for . The conjecture is a generalization of the four-color theorem and is considered to be one of the most important and challenging open problems in the field.

<span class="mw-page-title-main">Feedback arc set</span> Edges that hit all cycles in a graph

In graph theory and graph algorithms, a feedback arc set or feedback edge set in a directed graph is a subset of the edges of the graph that contains at least one edge out of every cycle in the graph. Removing these edges from the graph breaks all of the cycles, producing a directed acyclic graph, an acyclic subgraph of the given graph. The feedback arc set with the fewest possible edges is the minimum feedback arc set and its removal leaves the maximum acyclic subgraph; weighted versions of these optimization problems are also used. If a feedback arc set is minimal, meaning that removing any edge from it produces a subset that is not a feedback arc set, then it has an additional property: reversing all of its edges, rather than removing them, produces a directed acyclic graph.

<span class="mw-page-title-main">No-three-in-line problem</span> Geometry problem on grid points

The no-three-in-line problem in discrete geometry asks how many points can be placed in the grid so that no three points lie on the same line. This number is at most , because points in a grid would include a row of three or more points, by the pigeonhole principle. The problem was introduced by Henry Dudeney in 1900. Brass, Moser, and Pach call it "one of the oldest and most extensively studied geometric questions concerning lattice points".

In graph theory, the treewidth of an undirected graph is an integer number which specifies, informally, how far the graph is from being a tree. The smallest treewidth is 1; the graphs with treewidth 1 are exactly the trees and the forests. The graphs with treewidth at most 2 are the series–parallel graphs. The maximal graphs with treewidth exactly k are called k-trees, and the graphs with treewidth at most k are called partial k-trees. Many other well-studied graph families also have bounded treewidth.

<span class="mw-page-title-main">Neighbourhood (graph theory)</span> Subgraph made of all nodes linked to a given node of a graph

In graph theory, an adjacent vertex of a vertex v in a graph is a vertex that is connected to v by an edge. The neighbourhood of a vertex v in a graph G is the subgraph of G induced by all vertices adjacent to v, i.e., the graph composed of the vertices adjacent to v and all edges connecting vertices adjacent to v.

<span class="mw-page-title-main">Triangle-free graph</span> Graph without triples of adjacent vertices

In the mathematical area of graph theory, a triangle-free graph is an undirected graph in which no three vertices form a triangle of edges. Triangle-free graphs may be equivalently defined as graphs with clique number ≤ 2, graphs with girth ≥ 4, graphs with no induced 3-cycle, or locally independent graphs.

<span class="mw-page-title-main">Odd graph</span>

In the mathematical field of graph theory, the odd graphsOn are a family of symmetric graphs with high odd girth, defined from certain set systems. They include and generalize the Petersen graph.

<span class="mw-page-title-main">Hamiltonian decomposition</span>

In graph theory, a branch of mathematics, a Hamiltonian decomposition of a given graph is a partition of the edges of the graph into Hamiltonian cycles. Hamiltonian decompositions have been studied both for undirected graphs and for directed graphs. In the undirected case a Hamiltonian decomposition can also be described as a 2-factorization of the graph such that each factor is connected.

In graph theory, the modular decomposition is a decomposition of a graph into subsets of vertices called modules. A module is a generalization of a connected component of a graph. Unlike connected components, however, one module can be a proper subset of another. Modules therefore lead to a recursive (hierarchical) decomposition of the graph, instead of just a partition.

<span class="mw-page-title-main">Pancyclic graph</span>

In the mathematical study of graph theory, a pancyclic graph is a directed graph or undirected graph that contains cycles of all possible lengths from three up to the number of vertices in the graph. Pancyclic graphs are a generalization of Hamiltonian graphs, graphs which have a cycle of the maximum possible length.

Brian Roger Alspach is a mathematician whose main research interest is in graph theory. Alspach has also studied the mathematics behind poker, and writes for Poker Digest and Canadian Poker Player magazines.

In graph theory, the (ab)-decomposition of an undirected graph is a partition of its edges into a + 1 sets, each one of them inducing a forest, except one which induces a graph with maximum degree b. If this graph is also a forest, then we call this a F(ab)-decomposition.

Alspach's conjecture is a mathematical theorem that characterizes the disjoint cycle covers of complete graphs with prescribed cycle lengths. It is named after Brian Alspach, who posed it as a research problem in 1981. A proof was published by Darryn Bryant, Daniel Horsley, and William Pettersson (2014).

<span class="mw-page-title-main">Matroid parity problem</span> Largest independent set of paired elements

In combinatorial optimization, the matroid parity problem is a problem of finding the largest independent set of paired elements in a matroid. The problem was formulated by Lawler (1976) as a common generalization of graph matching and matroid intersection. It is also known as polymatroid matching, or the matchoid problem.

<span class="mw-page-title-main">Locally linear graph</span> Graph where every edge is in one triangle

In graph theory, a locally linear graph is an undirected graph in which every edge belongs to exactly one triangle. Equivalently, for each vertex of the graph, its neighbors are each adjacent to exactly one other neighbor, so the neighbors can be paired up into an induced matching. Locally linear graphs have also been called locally matched graphs.

<span class="mw-page-title-main">Tripod packing</span>

In combinatorics, tripod packing is a problem of finding many disjoint tripods in a three-dimensional grid, where a tripod is an infinite polycube, the union of the grid cubes along three positive axis-aligned rays with a shared apex.

<span class="mw-page-title-main">Graham–Pollak theorem</span>

In graph theory, the Graham–Pollak theorem states that the edges of an -vertex complete graph cannot be partitioned into fewer than complete bipartite graphs. It was first published by Ronald Graham and Henry O. Pollak in two papers in 1971 and 1972, in connection with an application to telephone switching circuitry.

References

  1. 1 2 3 Lenz, Hanfried; Ringel, Gerhard (1991), "A brief review on Egmont Köhler's mathematical work", Discrete Mathematics , 97 (1–3): 3–16, doi: 10.1016/0012-365X(91)90416-Y , MR   1140782
  2. 1 2 Huang, Charlotte; Kotzig, Anton; Rosa, Alexander (1979), "On a variation of the Oberwolfach problem", Discrete Mathematics, 27 (3): 261–277, doi: 10.1016/0012-365X(79)90162-6 , MR   0541472
  3. 1 2 Salassa, F.; Dragotto, G.; Traetta, T.; Buratti, M.; Della Croce, F. (2019), Merging Combinatorial Design and Optimization: the Oberwolfach Problem, arXiv: 1903.12112 , Bibcode:2019arXiv190312112S
  4. Glock, Stefan; Joos, Felix; Kim, Jaehoon; Kühn, Daniela; Osthus, Deryk (2021), "Resolution of the Oberwolfach problem", Journal of the European Mathematical Society , 23 (8): 2511–2547, arXiv: 1806.04644 , doi:10.4171/jems/1060, MR   4269420
  5. Keevash, Peter; Staden, Katherine (2022), "The generalised Oberwolfach problem" (PDF), Journal of Combinatorial Theory , Series B, 152: 281–318, doi:10.1016/j.jctb.2021.09.007, MR   4332743
  6. 1 2 Häggkvist, Roland (1985), "A lemma on cycle decompositions", Cycles in graphs (Burnaby, B.C., 1982), North-Holland Math. Stud., vol. 115, Amsterdam: North-Holland, pp. 227–232, doi:10.1016/S0304-0208(08)73015-9, MR   0821524
  7. Alspach, Brian; Häggkvist, Roland (1985), "Some observations on the Oberwolfach problem", Journal of Graph Theory , 9 (1): 177–187, doi:10.1002/jgt.3190090114, MR   0785659
  8. Alspach, Brian; Schellenberg, P. J.; Stinson, D. R.; Wagner, David (1989), "The Oberwolfach problem and factors of uniform odd length cycles", Journal of Combinatorial Theory , Series A, 52 (1): 20–43, doi: 10.1016/0097-3165(89)90059-9 , MR   1008157
  9. Hoffman, D. G.; Schellenberg, P. J. (1991), "The existence of -factorizations of ", Discrete Mathematics , 97 (1–3): 243–250, doi: 10.1016/0012-365X(91)90440-D , MR   1140806
  10. 1 2 Bryant, Darryn; Danziger, Peter (2011), "On bipartite 2-factorizations of and the Oberwolfach problem" (PDF), Journal of Graph Theory , 68 (1): 22–37, doi:10.1002/jgt.20538, MR   2833961
  11. Deza, A.; Franek, F.; Hua, W.; Meszka, M.; Rosa, A. (2010), "Solutions to the Oberwolfach problem for orders 18 to 40" (PDF), Journal of Combinatorial Mathematics and Combinatorial Computing, 74: 95–102, MR   2675892
  12. Bryant, Darryn; Scharaschkin, Victor (2009), "Complete solutions to the Oberwolfach problem for an infinite set of orders", Journal of Combinatorial Theory , Series B, 99 (6): 904–918, doi: 10.1016/j.jctb.2009.03.003 , MR   2558441
  13. Alspach, Brian; Bryant, Darryn; Horsley, Daniel; Maenhaut, Barbara; Scharaschkin, Victor (2016), "On factorisations of complete graphs into circulant graphs and the Oberwolfach problem", Ars Mathematica Contemporanea , 11 (1): 157–173, arXiv: 1411.6047 , doi:10.26493/1855-3974.770.150, MR   3546656
  14. Traetta, Tommaso (2013), "A complete solution to the two-table Oberwolfach problems", Journal of Combinatorial Theory , Series A, 120 (5): 984–997, doi: 10.1016/j.jcta.2013.01.003 , MR   3033656