Odd cycle transversal

Last updated
A graph with an odd cycle transversal of size 2: removing the two blue bottom vertices leaves a bipartite graph. Odd Cycle Transversal of size 2.png
A graph with an odd cycle transversal of size 2: removing the two blue bottom vertices leaves a bipartite graph.

In graph theory, an odd cycle transversal of an undirected graph is a set of vertices of the graph that has a nonempty intersection with every odd cycle in the graph. Removing the vertices of an odd cycle transversal from a graph leaves a bipartite graph as the remaining induced subgraph. [1]

Contents

Relation to vertex cover

A given -vertex graph has an odd cycle transversal of size , if and only if the Cartesian product of graphs (a graph consisting of two copies of , with corresponding vertices of each copy connected by the edges of a perfect matching) has a vertex cover of size . The odd cycle transversal can be transformed into a vertex cover by including both copies of each vertex from the transversal and one copy of each remaining vertex, selected from the two copies according to which side of the bipartition contains it. In the other direction, a vertex cover of can be transformed into an odd cycle transversal by keeping only the vertices for which both copies are in the cover. The vertices outside of the resulting transversal can be bipartitioned according to which copy of the vertex was used in the cover. [1]

Algorithms and complexity

The problem of finding the smallest odd cycle transversal, or equivalently the largest bipartite induced subgraph, is also called odd cycle transversal, and abbreviated as OCT. It is NP-hard, as a special case of the problem of finding the largest induced subgraph with a hereditary property (as the property of being bipartite is hereditary). All such problems for nontrivial properties are NP-hard. [2] [3]

The equivalence between the odd cycle transversal and vertex cover problems has been used to develop fixed-parameter tractable algorithms for odd cycle transversal, meaning that there is an algorithm whose running time can be bounded by a polynomial function of the size of the graph multiplied by a larger function of . The development of these algorithms led to the method of iterative compression, a more general tool for many other parameterized algorithms. [1] The parameterized algorithms known for these problems take nearly-linear time for any fixed value of . [4] Alternatively, with polynomial dependence on the graph size, the dependence on can be made as small as . [5] In contrast, the analogous problem for directed graphs does not admit a fixed-parameter tractable algorithm under standard complexity-theoretic assumptions. [6]

See also

Related Research Articles

Bipartite graph graph of two disjoint sets in which every vertex in one set is connected to at least one in the other

In the mathematical field of graph theory, a bipartite graph is a graph whose vertices can be divided into two disjoint and independent sets and such that every edge connects a vertex in to one in . Vertex sets and are usually called the parts of the graph. Equivalently, a bipartite graph is a graph that does not contain any odd-length cycles.

Steiner tree problem

The Steiner tree problem, or minimum Steiner tree problem, named after Jakob Steiner, is an umbrella term for a class of problems in combinatorial optimization. While Steiner tree problems may be formulated in a number of settings, they all require an optimal interconnect for a given set of objects and a predefined objective function. One well-known variant, which is often used synonymously with the term Steiner tree problem, is the Steiner tree problem in graphs. Given an undirected graph with non-negative edge weights and a subset of vertices, usually referred to as terminals, the Steiner tree problem in graphs requires a tree of minimum weight that contains all terminals. Further well-known variants are the Euclidean Steiner tree problem and the rectilinear minimum Steiner tree problem.

Vertex cover Set of vertices that includes at least one endpoint of every edge in a graph

In the mathematical discipline of graph theory, a vertex cover of a graph is a set of vertices that includes at least one endpoint of every edge of the graph. The problem of finding a minimum vertex cover is a classical optimization problem in computer science and is a typical example of an NP-hard optimization problem that has an approximation algorithm. Its decision version, the vertex cover problem, was one of Karp's 21 NP-complete problems and is therefore a classical NP-complete problem in computational complexity theory. Furthermore, the vertex cover problem is fixed-parameter tractable and a central problem in parameterized complexity theory.

In computer science, parameterized complexity is a branch of computational complexity theory that focuses on classifying computational problems according to their inherent difficulty with respect to multiple parameters of the input or output. The complexity of a problem is then measured as a function of those parameters. This allows the classification of NP-hard problems on a finer scale than in the classical setting, where the complexity of a problem is only measured by the number of bits in the input. The first systematic work on parameterized complexity was done by Downey & Fellows (1999).

Perfect graph type of graph (mathematical structure)

In graph theory, a perfect graph is a graph in which the chromatic number of every induced subgraph equals the size of the largest clique of that subgraph. Equivalently stated in symbolic terms an arbitrary graph is perfect if and only if we have:

Graph homomorphism a structure-preserving correspondence between node-link graphs

In the mathematical field of graph theory, a graph homomorphism is a mapping between two graphs that respects their structure. More concretely, it is a function between the vertex sets of two graphs that maps adjacent vertices to adjacent vertices.

In graph theory, the metric dimension of a graph G is the minimum cardinality of a subset S of vertices such that all other vertices are uniquely determined by their distances to the vertices in S. Finding the metric dimension of a graph is an NP-hard problem; the decision version, determining whether the metric dimension is less than a given value, is NP-complete.

In graph theory, a connected dominating set and a maximum leaf spanning tree are two closely related structures defined on an undirected graph.

In graph theory, the treewidth of an undirected graph is a number associated with the graph. Treewidth may be defined in several equivalent ways: from the size of the largest vertex set in a tree decomposition of the graph, from the size of the largest clique in a chordal completion of the graph, from the maximum order of a haven describing a strategy for a pursuit-evasion game on the graph, or from the maximum order of a bramble, a collection of connected subgraphs that all touch each other.

Claw-free graph

In graph theory, an area of mathematics, a claw-free graph is a graph that does not have a claw as an induced subgraph.

In computer science, a kernelization is a technique for designing efficient algorithms that achieve their efficiency by a preprocessing stage in which inputs to the algorithm are replaced by a smaller input, called a "kernel". The result of solving the problem on the kernel should either be the same as on the original input, or it should be easy to transform the output on the kernel to the desired output for the original problem.

Clique-width

In graph theory, the clique-width of a graph is a parameter that describes the structural complexity of the graph; it is closely related to treewidth, but unlike treewidth it can be bounded even for dense graphs. It is defined as the minimum number of labels needed to construct by means of the following 4 operations :

  1. Creation of a new vertex v with label i
  2. Disjoint union of two labeled graphs G and H
  3. Joining by an edge every vertex labeled i to every vertex labeled j, where
  4. Renaming label i to label j

In graph theory and theoretical computer science, the longest path problem is the problem of finding a simple path of maximum length in a given graph. A path is called simple if it does not have any repeated vertices; the length of a path may either be measured by its number of edges, or by the sum of the weights of its edges. In contrast to the shortest path problem, which can be solved in polynomial time in graphs without negative-weight cycles, the longest path problem is NP-hard and the decision version of the problem, which asks whether a path exists of at least some given length, is NP-complete. This means that the decision problem cannot be solved in polynomial time for arbitrary graphs unless P = NP. Stronger hardness results are also known showing that it is difficult to approximate. However, it has a linear time solution for directed acyclic graphs, which has important applications in finding the critical path in scheduling problems.

In graph theory, an area of mathematics, an equitable coloring is an assignment of colors to the vertices of an undirected graph, in such a way that

In graph theory, the tree-depth of a connected undirected graph G is a numerical invariant of G, the minimum height of a Trémaux tree for a supergraph of G. This invariant and its close relatives have gone under many different names in the literature, including vertex ranking number, ordered chromatic number, and minimum elimination tree height; it is also closely related to the cycle rank of directed graphs and the star height of regular languages. Intuitively, where the treewidth graph width parameter measures how far a graph is from being a tree, this parameter measures how far a graph is from being a star.

In computational complexity theory, the exponential time hypothesis is an unproven computational hardness assumption that was formulated by Impagliazzo & Paturi (1999). The hypothesis states that 3-SAT cannot be solved in subexponential time in the worst case. The exponential time hypothesis, if true, would imply that P ≠ NP, but it is a stronger statement. It can be used to show that many computational problems are equivalent in complexity, in the sense that if one of them has a subexponential time algorithm then they all do.

Bidimensionality theory characterizes a broad range of graph problems (bidimensional) that admit efficient approximate, fixed-parameter or kernel solutions in a broad range of graphs. These graph classes include planar graphs, map graphs, bounded-genus graphs and graphs excluding any fixed minor. In particular, bidimensionality theory builds on the graph minor theory of Robertson and Seymour by extending the mathematical results and building new algorithmic tools. The theory was introduced in the work of Demaine, Fomin, Hajiaghayi, and Thilikos, for which the authors received the Nerode Prize in 2015.

In computer science, iterative compression is an algorithmic technique for the design of fixed-parameter tractable algorithms, in which one element is added to the problem in each step, and a small solution for the problem prior to the addition is used to help find a small solution to the problem after the step.

In graph theory, a branch of mathematics, a t-biclique-free graph is a graph that has no 2t-vertex complete bipartite graph Kt,t as a subgraph. A family of graphs is biclique-free if there exists a number t such that the graphs in the family are all t-biclique-free. The biclique-free graph families form one of the most general types of sparse graph family. They arise in incidence problems in discrete geometry, and have also been used in parameterized complexity.

Map graph

In graph theory, a branch of mathematics, a map graph is an undirected graph formed as the intersection graph of finitely many simply connected and internally disjoint regions of the Euclidean plane. The map graphs include the planar graphs, but are more general. Any number of regions can meet at a common corner, and when they do the map graph will contain a clique connecting the corresponding vertices, unlike planar graphs in which the largest cliques have only four vertices. Another example of a map graph is the king's graph, a map graph of the squares of the chessboard connecting pairs of squares between which the chess king can move.

References

  1. 1 2 3 Cygan, Marek; Fomin, Fedor V.; Kowalik, Lukasz; Lokshtanov, Daniel; Marx, Dániel; Pilipczuk, Marcin; Pilipczuk, Michal; Saurabh, Saket (2015), Parameterized Algorithms, Springer, pp. 64–65, doi:10.1007/978-3-319-21275-3, ISBN   978-3-319-21274-6, MR   3380745
  2. Garey, Michael R.; Johnson, David S. (1979), "GT21: Induced subgraph with property Π", Computers and Intractability: A Guide to the Theory of NP-completeness, W. H. Freeman, p. 195
  3. Yannakakis, Mihalis (1978), "Node-and edge-deletion NP-complete problems", Proceedings of the 10th ACM Symposium on Theory of Computing (STOC '78), pp. 253–264, doi:10.1145/800133.804355
  4. Kawarabayashi, Ken-ichi; Reed, Bruce (2010), "An (almost) linear time algorithm for odd cycles transversal", Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, Philadelphia, PA: SIAM, pp. 365–378, CiteSeerX   10.1.1.215.2581 , doi:10.1137/1.9781611973075.31, ISBN   978-0-89871-701-3, MR   2809682
  5. Lokshtanov, Daniel; Narayanaswamy, N. S.; Raman, Venkatesh; Ramanujan, M. S.; Saurabh, Saket (2014), "Faster parameterized algorithms using linear programming", ACM Transactions on Algorithms, 11 (2): Art. 15, 31, arXiv: 1203.0833 , doi:10.1145/2566616, MR   3283570
  6. Lokshtanov, Daniel; Ramanujan, M. S.; Saurabh, Saket; Zehavi, Meirav (2017), Parameterized complexity and approximability of directed odd cycle transversal, arXiv: 1704.04249 , Bibcode:2017arXiv170404249L