Vertex cover

Last updated
Example graph that has a vertex cover comprising 2 vertices (bottom), but none with fewer. Couverture de sommets.svg
Example graph that has a vertex cover comprising 2 vertices (bottom), but none with fewer.

In graph theory, a vertex cover (sometimes node cover) of a graph is a set of vertices that includes at least one endpoint of every edge of the graph.

Contents

In computer science, the problem of finding a minimum vertex cover is a classical optimization problem. It is NP-hard, so it cannot be solved by a polynomial-time algorithm if P ≠ NP. Moreover, it is hard to approximate – it cannot be approximated up to a factor smaller than 2 if the unique games conjecture is true. On the other hand, it has several simple 2-factor approximations. It is a typical example of an NP-hard optimization problem that has an approximation algorithm. Its decision version, the vertex cover problem, was one of Karp's 21 NP-complete problems and is therefore a classical NP-complete problem in computational complexity theory. Furthermore, the vertex cover problem is fixed-parameter tractable and a central problem in parameterized complexity theory.

The minimum vertex cover problem can be formulated as a half-integral, linear program whose dual linear program is the maximum matching problem.

Vertex cover problems have been generalized to hypergraphs, see Vertex cover in hypergraphs .

Definition

Examples of vertex covers Vertex-cover.svg
Examples of vertex covers
Examples of minimum vertex covers Minimum-vertex-cover.svg
Examples of minimum vertex covers

Formally, a vertex cover of an undirected graph is a subset of such that , that is to say it is a set of vertices where every edge has at least one endpoint in the vertex cover . Such a set is said to cover the edges of . The upper figure shows two examples of vertex covers, with some vertex cover marked in red.

A minimum vertex cover is a vertex cover of smallest possible size. The vertex cover number is the size of a minimum vertex cover, i.e. . The lower figure shows examples of minimum vertex covers in the previous graphs.

Examples

Properties

Computational problem

The minimum vertex cover problem is the optimization problem of finding a smallest vertex cover in a given graph.

INSTANCE: Graph
OUTPUT: Smallest number such that has a vertex cover of size .

If the problem is stated as a decision problem, it is called the vertex cover problem:

INSTANCE: Graph and positive integer .
QUESTION: Does have a vertex cover of size at most ?

The vertex cover problem is an NP-complete problem: it was one of Karp's 21 NP-complete problems. It is often used in computational complexity theory as a starting point for NP-hardness proofs.

ILP formulation

Assume that every vertex has an associated cost of . The (weighted) minimum vertex cover problem can be formulated as the following integer linear program (ILP). [2]

minimize  (minimize the total cost)
subject tofor all (cover every edge of the graph),
for all .(every vertex is either in the vertex cover or not)

This ILP belongs to the more general class of ILPs for covering problems. The integrality gap of this ILP is , so its relaxation (allowing each variable to be in the interval from 0 to 1, rather than requiring the variables to be only 0 or 1) gives a factor- approximation algorithm for the minimum vertex cover problem. Furthermore, the linear programming relaxation of that ILP is half-integral, that is, there exists an optimal solution for which each entry is either 0, 1/2, or 1. A 2-approximate vertex cover can be obtained from this fractional solution by selecting the subset of vertices whose variables are nonzero.

Exact evaluation

The decision variant of the vertex cover problem is NP-complete, which means it is unlikely that there is an efficient algorithm to solve it exactly for arbitrary graphs. NP-completeness can be proven by reduction from 3-satisfiability or, as Karp did, by reduction from the clique problem. Vertex cover remains NP-complete even in cubic graphs [3] and even in planar graphs of degree at most 3. [4]

For bipartite graphs, the equivalence between vertex cover and maximum matching described by Kőnig's theorem allows the bipartite vertex cover problem to be solved in polynomial time.

For tree graphs, an algorithm finds a minimal vertex cover in polynomial time by finding the first leaf in the tree and adding its parent to the minimal vertex cover, then deleting the leaf and parent and all associated edges and continuing repeatedly until no edges remain in the tree.

Fixed-parameter tractability

An exhaustive search algorithm can solve the problem in time 2knO(1), where k is the size of the vertex cover. Vertex cover is therefore fixed-parameter tractable, and if we are only interested in small k, we can solve the problem in polynomial time. One algorithmic technique that works here is called bounded search tree algorithm, and its idea is to repeatedly choose some vertex and recursively branch, with two cases at each step: place either the current vertex or all its neighbours into the vertex cover. The algorithm for solving vertex cover that achieves the best asymptotic dependence on the parameter runs in time . [5] The klam value of this time bound (an estimate for the largest parameter value that could be solved in a reasonable amount of time) is approximately 190. That is, unless additional algorithmic improvements can be found, this algorithm is suitable only for instances whose vertex cover number is 190 or less. Under reasonable complexity-theoretic assumptions, namely the exponential time hypothesis, the running time cannot be improved to 2o(k), even when is .

However, for planar graphs, and more generally, for graphs excluding some fixed graph as a minor, a vertex cover of size k can be found in time , i.e., the problem is subexponential fixed-parameter tractable. [6] This algorithm is again optimal, in the sense that, under the exponential time hypothesis, no algorithm can solve vertex cover on planar graphs in time . [7]

Approximate evaluation

One can find a factor-2 approximation by repeatedly taking both endpoints of an edge into the vertex cover, then removing them from the graph. Put otherwise, we find a maximal matching M with a greedy algorithm and construct a vertex cover C that consists of all endpoints of the edges in M. In the following figure, a maximal matching M is marked with red, and the vertex cover C is marked with blue.

Vertex-cover-from-maximal-matching.svg

The set C constructed this way is a vertex cover: suppose that an edge e is not covered by C; then M  {e} is a matching and e  M, which is a contradiction with the assumption that M is maximal. Furthermore, if e = {u, v} ∈ M, then any vertex cover – including an optimal vertex cover – must contain u or v (or both); otherwise the edge e is not covered. That is, an optimal cover contains at least one endpoint of each edge in M; in total, the set C is at most 2 times as large as the optimal vertex cover.

This simple algorithm was discovered independently by Fanica Gavril and Mihalis Yannakakis. [8]

More involved techniques show that there are approximation algorithms with a slightly better approximation factor. For example, an approximation algorithm with an approximation factor of is known. [9] The problem can be approximated with an approximation factor in - dense graphs. [10]

Inapproximability

No better constant-factor approximation algorithm than the above one is known. The minimum vertex cover problem is APX-complete, that is, it cannot be approximated arbitrarily well unless P = NP. Using techniques from the PCP theorem, Dinur and Safra proved in 2005 that minimum vertex cover cannot be approximated within a factor of 1.3606 for any sufficiently large vertex degree unless P = NP. [11] Later, the factor was improved to for any . [12] Moreover, if the unique games conjecture is true then minimum vertex cover cannot be approximated within any constant factor better than 2. [13]

Although finding the minimum-size vertex cover is equivalent to finding the maximum-size independent set, as described above, the two problems are not equivalent in an approximation-preserving way: The Independent Set problem has no constant-factor approximation unless P = NP.

Pseudocode

APPROXIMATION-VERTEX-COVER(G)C=E'=G.EwhileE':let(u,v)beanarbitraryedgeofE'C=C{u,v}removefromE'everyedgeincidentoneitheruorvreturnC

[14] [15]

Applications

Vertex cover optimization serves as a model for many real-world and theoretical problems. For example, a commercial establishment interested in installing the fewest possible closed circuit cameras covering all hallways (edges) connecting all rooms (nodes) on a floor might model the objective as a vertex cover minimization problem. The problem has also been used to model the elimination of repetitive DNA sequences for synthetic biology and metabolic engineering applications. [16] [17]

See also

Notes

  1. Gallai 1959.
  2. Vazirani 2003 , pp. 121–122
  3. Garey, Johnson & Stockmeyer 1974
  4. Garey & Johnson 1977; Garey & Johnson 1979, pp. 190 and 195.
  5. Chen, Kanj & Xia 2006
  6. Demaine et al. 2005
  7. Flum & Grohe (2006 , p. 437)
  8. Papadimitriou & Steiglitz 1998, p. 432, mentions both Gavril and Yannakakis. Garey & Johnson 1979, p. 134, cites Gavril.
  9. Karakostas 2009
  10. Karpinski & Zelikovsky 1998
  11. Dinur & Safra 2005
  12. Khot, Minzer & Safra 2017; Dinur et al. 2018; Khot, Minzer & Safra 2018
  13. Khot & Regev 2008
  14. Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L.; Stein, Clifford (2001) [1990]. "Section 35.1: The vertex-cover problem". Introduction to Algorithms (2nd ed.). MIT Press and McGraw-Hill. pp. 1024–1027. ISBN   0-262-03293-7.
  15. Chakrabarti, Amit (Winter 2005). "Approximation Algorithms: Vertex Cover" (PDF). Computer Science 105. Dartmouth College . Retrieved 21 February 2005.
  16. Hossain, Ayaan; Lopez, Eriberto; Halper, Sean M.; Cetnar, Daniel P.; Reis, Alexander C.; Strickland, Devin; Klavins, Eric; Salis, Howard M. (2020-07-13). "Automated design of thousands of nonrepetitive parts for engineering stable genetic systems". Nature Biotechnology. 38 (12): 1466–1475. doi:10.1038/s41587-020-0584-2. ISSN   1087-0156. PMID   32661437. S2CID   220506228.
  17. Reis, Alexander C.; Halper, Sean M.; Vezeau, Grace E.; Cetnar, Daniel P.; Hossain, Ayaan; Clauer, Phillip R.; Salis, Howard M. (November 2019). "Simultaneous repression of multiple bacterial genes using nonrepetitive extra-long sgRNA arrays". Nature Biotechnology. 37 (11): 1294–1301. doi:10.1038/s41587-019-0286-9. ISSN   1546-1696. OSTI   1569832. PMID   31591552. S2CID   203852115.

Related Research Articles

<span class="mw-page-title-main">Steiner tree problem</span> On short connecting networks with added vertices

In combinatorial mathematics, the Steiner tree problem, or minimum Steiner tree problem, named after Jakob Steiner, is an umbrella term for a class of problems in combinatorial optimization. While Steiner tree problems may be formulated in a number of settings, they all require an optimal interconnect for a given set of objects and a predefined objective function. One well-known variant, which is often used synonymously with the term Steiner tree problem, is the Steiner tree problem in graphs. Given an undirected graph with non-negative edge weights and a subset of vertices, usually referred to as terminals, the Steiner tree problem in graphs requires a tree of minimum weight that contains all terminals and minimizes the total weight of its edges. Further well-known variants are the Euclidean Steiner tree problem and the rectilinear minimum Steiner tree problem.

<span class="mw-page-title-main">Independent set (graph theory)</span> Unrelated vertices in graphs

In graph theory, an independent set, stable set, coclique or anticlique is a set of vertices in a graph, no two of which are adjacent. That is, it is a set of vertices such that for every two vertices in , there is no edge connecting the two. Equivalently, each edge in the graph has at most one endpoint in . A set is independent if and only if it is a clique in the graph's complement. The size of an independent set is the number of vertices it contains. Independent sets have also been called "internally stable sets", of which "stable set" is a shortening.

In computer science and operations research, approximation algorithms are efficient algorithms that find approximate solutions to optimization problems with provable guarantees on the distance of the returned solution to the optimal one. Approximation algorithms naturally arise in the field of theoretical computer science as a consequence of the widely believed P ≠ NP conjecture. Under this conjecture, a wide class of optimization problems cannot be solved exactly in polynomial time. The field of approximation algorithms, therefore, tries to understand how closely it is possible to approximate optimal solutions to such problems in polynomial time. In an overwhelming majority of the cases, the guarantee of such algorithms is a multiplicative one expressed as an approximation ratio or approximation factor i.e., the optimal solution is always guaranteed to be within a (predetermined) multiplicative factor of the returned solution. However, there are also many approximation algorithms that provide an additive guarantee on the quality of the returned solution. A notable example of an approximation algorithm that provides both is the classic approximation algorithm of Lenstra, Shmoys and Tardos for scheduling on unrelated parallel machines.

In the mathematical discipline of graph theory, a matching or independent edge set in an undirected graph is a set of edges without common vertices. In other words, a subset of the edges is a matching if each vertex appears in at most one edge of that matching. Finding a matching in a bipartite graph can be treated as a network flow problem.

<span class="mw-page-title-main">Complete coloring</span> Vertex coloring where every color pairing appears at least once

In graph theory, a complete coloring is a (proper) vertex coloring in which every pair of colors appears on at least one pair of adjacent vertices. Equivalently, a complete coloring is minimal in the sense that it cannot be transformed into a proper coloring with fewer colors by merging pairs of color classes. The achromatic numberψ(G) of a graph G is the maximum number of colors possible in any complete coloring of G.

<span class="mw-page-title-main">Set cover problem</span> Classical problem in combinatorics

The set cover problem is a classical question in combinatorics, computer science, operations research, and complexity theory.

<span class="mw-page-title-main">Dominating set</span> Subset of a graphs nodes such that all other nodes link to at least one

In graph theory, a dominating set for a graph G is a subset D of its vertices, such that any vertex of G is in D, or has a neighbor in D. The domination numberγ(G) is the number of vertices in a smallest dominating set for G.

In graph theory, a domatic partition of a graph is a partition of into disjoint sets , ,..., such that each Vi is a dominating set for G. The figure on the right shows a domatic partition of a graph; here the dominating set consists of the yellow vertices, consists of the green vertices, and consists of the blue vertices.

In the mathematical discipline of graph theory, a feedback vertex set (FVS) of a graph is a set of vertices whose removal leaves a graph without cycles. Equivalently, each FVS contains at least one vertex of any cycle in the graph. The feedback vertex set number of a graph is the size of a smallest feedback vertex set. The minimum feedback vertex set problem is an NP-complete problem; it was among the first problems shown to be NP-complete. It has wide applications in operating systems, database systems, and VLSI chip design.

<span class="mw-page-title-main">Feedback arc set</span> Edges that hit all cycles in a graph

In graph theory and graph algorithms, a feedback arc set or feedback edge set in a directed graph is a subset of the edges of the graph that contains at least one edge out of every cycle in the graph. Removing these edges from the graph breaks all of the cycles, producing an acyclic subgraph of the given graph, often called a directed acyclic graph. A feedback arc set with the fewest possible edges is a minimum feedback arc set and its removal leaves a maximum acyclic subgraph; weighted versions of these optimization problems are also used. If a feedback arc set is minimal, meaning that removing any edge from it produces a subset that is not a feedback arc set, then it has an additional property: reversing all of its edges, rather than removing them, produces a directed acyclic graph.

Set packing is a classical NP-complete problem in computational complexity theory and combinatorics, and was one of Karp's 21 NP-complete problems. Suppose one has a finite set S and a list of subsets of S. Then, the set packing problem asks if some k subsets in the list are pairwise disjoint.

In graph theory, a cut is a partition of the vertices of a graph into two disjoint subsets. Any cut determines a cut-set, the set of edges that have one endpoint in each subset of the partition. These edges are said to cross the cut. In a connected graph, each cut-set determines a unique cut, and in some cases cuts are identified with their cut-sets rather than with their vertex partitions.

In computational complexity theory, the unique games conjecture is a conjecture made by Subhash Khot in 2002. The conjecture postulates that the problem of determining the approximate value of a certain type of game, known as a unique game, has NP-hard computational complexity. It has broad applications in the theory of hardness of approximation. If the unique games conjecture is true and P ≠ NP, then for many important problems it is not only impossible to get an exact solution in polynomial time, but also impossible to get a good polynomial-time approximation. The problems for which such an inapproximability result would hold include constraint satisfaction problems, which crop up in a wide variety of disciplines.

In graph theory, a connected graph is k-edge-connected if it remains connected whenever fewer than k edges are removed.

<span class="mw-page-title-main">Kőnig's theorem (graph theory)</span> Theorem showing that maximum matching and minimum vertex cover are equivalent for bipartite graphs

In the mathematical area of graph theory, Kőnig's theorem, proved by Dénes Kőnig, describes an equivalence between the maximum matching problem and the minimum vertex cover problem in bipartite graphs. It was discovered independently, also in 1931, by Jenő Egerváry in the more general case of weighted graphs.

In computer science, a kernelization is a technique for designing efficient algorithms that achieve their efficiency by a preprocessing stage in which inputs to the algorithm are replaced by a smaller input, called a "kernel". The result of solving the problem on the kernel should either be the same as on the original input, or it should be easy to transform the output on the kernel to the desired output for the original problem.

<span class="mw-page-title-main">Crossing number (graph theory)</span> Fewest edge crossings in drawing of a graph

In graph theory, the crossing numbercr(G) of a graph G is the lowest number of edge crossings of a plane drawing of the graph G. For instance, a graph is planar if and only if its crossing number is zero. Determining the crossing number continues to be of great importance in graph drawing, as user studies have shown that drawing graphs with few crossings makes it easier for people to understand the drawing.

<span class="mw-page-title-main">Maximum cut</span> Problem of finding a maximum cut in a graph

In a graph, a maximum cut is a cut whose size is at least the size of any other cut. That is, it is a partition of the graph's vertices into two complementary sets S and T, such that the number of edges between S and T is as large as possible. Finding such a cut is known as the max-cut problem.

In network theory, the Wiener connector is a means of maximizing efficiency in connecting specified "query vertices" in a network. Given a connected, undirected graph and a set of query vertices in a graph, the minimum Wiener connector is an induced subgraph that connects the query vertices and minimizes the sum of shortest path distances among all pairs of vertices in the subgraph. In combinatorial optimization, the minimum Wiener connector problem is the problem of finding the minimum Wiener connector. It can be thought of as a version of the classic Steiner tree problem, where instead of minimizing the size of the tree, the objective is to minimize the distances in the subgraph.

<span class="mw-page-title-main">Cutwidth</span> Property in graph theory

In graph theory, the cutwidth of an undirected graph is the smallest integer with the following property: there is an ordering of the vertices of the graph, such that every cut obtained by partitioning the vertices into earlier and later subsets of the ordering is crossed by at most edges. That is, if the vertices are numbered , then for every , the number of edges with and is at most .

References