Olivier pile

Last updated
The screw-shaped shaft of an excavated Olivier Pile Uitgegraven Olivier Paal.jpg
The screw-shaped shaft of an excavated Olivier Pile

An Olivier pile is a drilled displacement pile:. [1] This is an underground deep foundation pile made of concrete or reinforced concrete with a screw-shaped shaft (helical shaft) which is performed without soil removal.

Contents

History

The Belgian Gerdi Vankeirsbilck applied for the production patent for the Olivier pile in April 1996. [2] This technique was implemented by his own company and various licences have been granted in Belgium and abroad. Due to its screw-shaped shaft, the Olivier pile is particularly suitable for use in soils with low load-bearing capacities, such as clay and loam. [3] In 2018 a patent was applied for drilling without the use of a lost bit. [4]

Description

An Olivier pile is drilled into the ground by the use of drilling rig with a top-type rotary drive with variable rate of penetration. A lost tip is attached to a partial-flight auger which, in turn, is attached to a casing. The casing, which is rotated clockwise continuously, penetrates into the ground by the action of a torque and a vertical force. At the desired installation depth, the lost tip is released, and the reinforcing cage is inserted into the casing. Concrete is then placed inside the casing through a funnel. The casing and the partialflight auger are extracted by counter-clockwise rotation. The shaft of the Olivier pile has the shape of a screw. [5] [6]

The casing has an external diameter of 324mm (12.75"), with a wall thickness of 25mm (1"). The casing consists of several parts assembled with watertight couplings, which are strong enough to handle the maximum torque produced by the rotary drive. The various auger heads, for the various diameters of the Olivier Pile, all have a larger diameter than the casing.

Common diameters of the auger head [7]

Installation

Implementation method of the Olivier Pile.
1. clockwise drilling.
2. required depth reached.
3. reverse drilling and at the same time fill the space with concrete (and reinforcement).
4. the formed pile. Uitvoeringsmethode.png
Implementation method of the Olivier Pile.
1. clockwise drilling.
2. required depth reached.
3. reverse drilling and at the same time fill the space with concrete (and reinforcement).
4. the formed pile.

See also

Related Research Articles

Geotechnical engineering Scientific study of earth materials in engineering problems

Geotechnical engineering, also known as geotechnics, is the branch of civil engineering concerned with the engineering behavior of earth materials. It uses the principles and methods of soil mechanics and rock mechanics for the solution of engineering problems and the design of engineering works. It also relies on knowledge of geology, hydrology, geophysics, and other related sciences.

Pump Device that imparts energy to the fluids by mechanical action

A pump is a device that moves fluids, or sometimes slurries, by mechanical action, typically converted from electrical energy into Hydraulic energy. Pumps can be classified into three major groups according to the method they use to move the fluid: direct lift, displacement, and gravity pumps.

Screwdriver hand-tool

A screwdriver is a tool, manual or powered, used for screwing (installing) and unscrewing (removing) screws. A typical simple screwdriver has a handle and a shaft, ending in a tip the user puts into the screw head before turning the handle. This form of the screwdriver has been replaced in many workplaces and homes with a more modern and versatile tool, a power drill, as they are quicker, easier, and also can drill holes. The shaft is usually made of tough steel to resist bending or twisting. The tip may be hardened to resist wear, treated with a dark tip coating for improved visual contrast between tip and screw—or ridged or treated for additional 'grip'. Handles are typically wood, metal, or plastic and usually hexagonal, square, or oval in cross-section to improve grip and prevent the tool from rolling when set down. Some manual screwdrivers have interchangeable tips that fit into a socket on the end of the shaft and are held in mechanically or magnetically. These often have a hollow handle that contains various types and sizes of tips, and a reversible ratchet action that allows multiple full turns without repositioning the tip or the user's hand.

Drill

A drill or drilling machine is a tool primarily used for making round holes or driving fasteners. It is fitted with a bit, either a drill or driver, depending on application, secured by a chuck. Some powered drills also include a hammer function.

Cone penetration test

The cone penetration or cone penetrometer test (CPT) is a method used to determine the geotechnical engineering properties of soils and delineating soil stratigraphy. It was initially developed in the 1950s at the Dutch Laboratory for Soil Mechanics in Delft to investigate soft soils. Based on this history it has also been called the "Dutch cone test". Today, the CPT is one of the most used and accepted soil methods for soil investigation worldwide.

Drill bit

Drill bits are cutting tools used to remove material to create holes, almost always of circular cross-section. Drill bits come in many sizes and shapes and can create different kinds of holes in many different materials. In order to create holes drill bits are usually attached to a drill, which powers them to cut through the workpiece, typically by rotation. The drill will grasp the upper end of a bit called the shank in the chuck.

Auger (drill)

An auger is a drilling device, or drill bit, used for making holes in wood or in the ground. It usually includes a rotating helical screw blade called a 'flighting' to act as a screw conveyor to remove the drilled out material. The rotation of the blade causes the material to move out of the hole being drilled.

Drilling rig Integrated system that drills wells

A drilling rig is an integrated system that drills wells, such as oil or water wells, in the earth's subsurface. Drilling rigs can be massive structures housing equipment used to drill water wells, oil wells, or natural gas extraction wells, or they can be small enough to be moved manually by one person and such are called augers. Drilling rigs can sample subsurface mineral deposits, test rock, soil and groundwater physical properties, and also can be used to install sub-surface fabrications, such as underground utilities, instrumentation, tunnels or wells. Drilling rigs can be mobile equipment mounted on trucks, tracks or trailers, or more permanent land or marine-based structures. The term "rig" therefore generally refers to the complex equipment that is used to penetrate the surface of the Earth's crust.

In construction or renovation, underpinning is the process of strengthening the foundation of an existing building or other structure. Underpinning may be necessary for a variety of reasons:

A pile driver is a device used to drive piles into soil to provide foundation support for buildings or other structures. The term is also used in reference to members of the construction crew that work with pile-driving rigs.

Geotechnical investigation

Geotechnical investigations are performed by geotechnical engineers or engineering geologists to obtain information on the physical properties of soil earthworks and foundations for proposed structures and for repair of distress to earthworks and structures caused by subsurface conditions. This type of investigation is called a site investigation. Additionally, geotechnical investigations are also used to measure the thermal resistivity of soils or backfill materials required for underground transmission lines, oil and gas pipelines, radioactive waste disposal, and solar thermal storage facilities. A geotechnical investigation will include surface exploration and subsurface exploration of a site. Sometimes, geophysical methods are used to obtain data about sites. Subsurface exploration usually involves soil sampling and laboratory tests of the soil samples retrieved.

Deep foundation Type of foundation

A deep foundation is a type of foundation that transfers building loads to the earth farther down from the surface than a shallow foundation does to a subsurface layer or a range of depths. A pile or piling is a vertical structural element of a deep foundation, driven or drilled deep into the ground at the building site.

A pile is a slender element cast in the ground or driven into it. Since pile construction as well as the final product are mostly invisible, engineers have often questioned their integrity, i.e. their compliance with project drawings and specifications. In fact, experience has shown that in piles, of all kinds flaws may occur. The purpose of integrity testing is to discover such flaws before they can cause any damage.

Tieback (geotechnical)

A tieback is a structural element installed in soil or rock to transfer applied tensile load into the ground. Typically in the form of a horizontal wire or rod, or a helical anchor, a tieback is commonly used along with other retaining systems to provide additional stability to cantilevered retaining walls. With one end of the tieback secured to the wall, the other end is anchored to a stable structure, such as a concrete deadman which has been driven into the ground or anchored into earth with sufficient resistance. The tieback-deadman structure resists forces that would otherwise cause the wall to lean, as for example, when a seawall is pushed seaward by water trapped on the landward side after a heavy rain.

The Deep Foundations Institute (DFI) is an international membership association of contractor, engineers and suppliers in the field of design and construction of deep foundations and excavations. The organization is classified as a 501(c)(6) non-profit corporation under the United States Internal Revenue Code. DFI was formed in 1976.

Well Excavation or structure to provide access to groundwater

A well is an excavation or structure created in the ground by digging, driving, or drilling to access liquid resources, usually water. The oldest and most common kind of well is a water well, to access groundwater in underground aquifers. The well water is drawn up by a pump, or using containers, such as buckets, that are raised mechanically or by hand. Water can also be injected back into the aquifer through the well. Wells were first constructed at least eight thousand years ago and historically vary in construction from a simple scoop in the sediment of a dry watercourse to the qanats of Iran, and the stepwells and sakiehs of India. Placing a lining in the well shaft helps create stability, and linings of wood or wickerwork date back at least as far as the Iron Age.

Screw piles

Screw piles, sometimes referred to as screw anchors, screw-piles, helical piles, and helical anchors are a steel screw-in piling and ground anchoring system used for building deep foundations. Screw piles are manufactured using varying sizes of tubular hollow sections for the pile or anchors shaft.

Franki piling system

The Franki piling system is a method used to drive expanded base cast-in-situ concrete (Franki) piles. It was developed by Belgian Engineer Edgard Frankignoul in 1909.

Ice drilling Method of drilling through ice

Ice drilling allows scientists studying glaciers and ice sheets to gain access to what is beneath the ice, to take measurements along the interior of the ice, and to retrieve samples. Instruments can be placed in the drilled holes to record temperature, pressure, speed, direction of movement, and for other scientific research, such as neutrino detection.

Offshore embedded anchors Type of anchor

Offshore embedded anchors are anchors that derive their holding capacity from the frictional, or bearing, resistance of the surrounding soil, as opposed to gravity anchors, which derive their holding capacity largely from their weight. As offshore developments move into deeper waters, gravity-based structures become less economical due to the large size needed and the consequent cost of transportation.

References

  1. Lutenegger, Alan J. (2019). Soils and Geotechnology in Construction. p. 261. ISBN   9781498741026.
  2. EP 0747537,Vankeirsbilck Gerdi,"Drive-out drill and method for the realisation of ground screw-piles",published 1996-12-11
  3. Holeyman, Alain E., ed. (2001). Screw Piles - Installation and Design in Stiff Clay. ISBN   90-5809-192-9.
  4. WO 2019077416,Vankeirsbilck Gerdi,"Soil-displacement drill, method for converting a soil-displacement drill and method for forming a foundation pile",published 2019-04-25
  5. Prezzi, Monica (4 September 2009), "Design and applications of drilled displacement (screw) piles" (PDF), Puredue University, pp. 25–26
  6. "Deep foundations institute - DFI Journal" (PDF), dfi.org, p. 8, 1 August 2010
  7. Mangushev, R.A.; Ershov, R.V.; Osokin, A.I. (2016). Pile Construction Technology. p. 68. ISBN   9789198222302.
  8. Prof. Ir. Maertens, Jan; Ir. Huybrechts, Noël (2003). Belgian screw pile technology. pp. 112–116. ISBN   9789058095787.