Optical circulator

Last updated
Optical Circulator symbol Circulator-symbol-CCW.svg
Optical Circulator symbol

An optical circulator is a three- or four-port optical device designed such that light entering any port exits from the next. This means that if light enters port 1 it is emitted from port 2, but if some of the emitted light is reflected back to the circulator, it does not come out of port 1 but instead exits from port 3. This is analogous to the operation of an electronic circulator. Fiber-optic circulators are used to separate optical signals that travel in opposite directions in an optical fiber, for example to achieve bi-directional transmission over a single fiber. [1] Because of their high isolation of the input and reflected optical powers and their low insertion loss, optical circulators are widely used in advanced fiber-optic communications and fiber-optic sensor applications.

Contents

Optical circulators are non-reciprocal optics, which means that changes in the properties of light passing through the device are not reversed when the light passes through in the opposite direction. This can only happen when the symmetry of the system is broken, for example by an external magnetic field. A Faraday rotator is another example of a non-reciprocal optical device, and indeed it is possible to construct an optical circulator based on a Faraday rotator.

History

In 1965, Ribbens reported an early form of optical circulator that utilized a Nicol prism with a Faraday rotator. [2] With the advent of fiber and guided-wave optics, waveguide-integrable and polarization-independent optical circulators were later introduced. [3] [4] [5] The concept was later extended to silicon photonic waveguide systems. [6] [7] [8] [9] In 2016, Scheucher et al. have demonstrated a fiber-integrated optical circulator whose nonreciprocal behavior originated from the chiral interaction between a single 85Rb atom and the confined light in a whispering-gallery mode microresonator. The routing direction of the device is controlled by the internal quantum state of the atom and the device is able to route individual photons. [10]

In 2013, Davoyan and Engheta proposed a nanoscale plasmonic Y-circulator based on three dielectric waveguides interconnected with a magneto-optical junction with plasmonic nanorods. [11]

See also

Related Research Articles

<span class="mw-page-title-main">Photonic crystal</span> Periodic optical nanostructure that affects the motion of photons

A photonic crystal is an optical nanostructure in which the refractive index changes periodically. This affects the propagation of light in the same way that the structure of natural crystals gives rise to X-ray diffraction and that the atomic lattices of semiconductors affect their conductivity of electrons. Photonic crystals occur in nature in the form of structural coloration and animal reflectors, and, as artificially produced, promise to be useful in a range of applications.

<span class="mw-page-title-main">Metamaterial</span> Materials engineered to have properties that have not yet been found in nature

A metamaterial is a type of material engineered to have a property, typically rarely observed in naturally occurring materials, that is derived not from the properties of the base materials but from their newly designed structures. Metamaterials are usually fashioned from multiple materials, such as metals and plastics, and are usually arranged in repeating patterns, at scales that are smaller than the wavelengths of the phenomena they influence. Their precise shape, geometry, size, orientation, and arrangement give them their "smart" properties of manipulating electromagnetic, acoustic, or even seismic waves: by blocking, absorbing, enhancing, or bending waves, to achieve benefits that go beyond what is possible with conventional materials.

<span class="mw-page-title-main">Optical ring resonators</span> Set of waveguides including a closed loop

An optical ring resonator is a set of waveguides in which at least one is a closed loop coupled to some sort of light input and output. The concepts behind optical ring resonators are the same as those behind whispering galleries except that they use light and obey the properties behind constructive interference and total internal reflection. When light of the resonant wavelength is passed through the loop from the input waveguide, the light builds up in intensity over multiple round-trips owing to constructive interference and is output to the output bus waveguide which serves as a detector waveguide. Because only a select few wavelengths will be at resonance within the loop, the optical ring resonator functions as a filter. Additionally, as implied earlier, two or more ring waveguides can be coupled to each other to form an add/drop optical filter.

An optical waveguide is a physical structure that guides electromagnetic waves in the optical spectrum. Common types of optical waveguides include optical fiber waveguides, transparent dielectric waveguides made of plastic and glass, liquid light guides, and liquid waveguides.

Nanophotonics or nano-optics is the study of the behavior of light on the nanometer scale, and of the interaction of nanometer-scale objects with light. It is a branch of optics, optical engineering, electrical engineering, and nanotechnology. It often involves dielectric structures such as nanoantennas, or metallic components, which can transport and focus light via surface plasmon polaritons.

A photonic integrated circuit (PIC) or integrated optical circuit is a microchip containing two or more photonic components that form a functioning circuit. This technology detects, generates, transports, and processes light. Photonic integrated circuits use photons as opposed to electrons that are used by electronic integrated circuits. The major difference between the two is that a photonic integrated circuit provides functions for information signals imposed on optical wavelengths typically in the visible spectrum or near-infrared (850–1650 nm).

<span class="mw-page-title-main">Silicon photonics</span> Photonic systems which use silicon as an optical medium

Silicon photonics is the study and application of photonic systems which use silicon as an optical medium. The silicon is usually patterned with sub-micrometre precision, into microphotonic components. These operate in the infrared, most commonly at the 1.55 micrometre wavelength used by most fiber optic telecommunication systems. The silicon typically lies on top of a layer of silica in what is known as silicon on insulator (SOI).

<span class="mw-page-title-main">Nader Engheta</span> Iranian-American scientist

Nader Engheta is an Iranian-American scientist. He has made pioneering contributions to the fields of metamaterials, transformation optics, plasmonic optics, nanophotonics, graphene photonics, nano-materials, nanoscale optics, nano-antennas and miniaturized antennas, physics and reverse-engineering of polarization vision in nature, bio-inspired optical imaging, fractional paradigm in electrodynamics, and electromagnetics and microwaves.

<span class="mw-page-title-main">Slot-waveguide</span>

A slot-waveguide is an optical waveguide that guides strongly confined light in a subwavelength-scale low refractive index region by total internal reflection.

An optical modulator is an optical device which is used to modulate a beam of light with a perturbation device. It is a kind of transmitter to convert information to optical binary signal through optical fiber or transmission medium of optical frequency in fiber optic communication. There are several methods to manipulate this device depending on the parameter of a light beam like amplitude modulator (majority), phase modulator, polarization modulator etc. The easiest way to obtain modulation is modulation of intensity of a light by the current driving the light source. This sort of modulation is called direct modulation, as opposed to the external modulation performed by a light modulator. For this reason, light modulators are called external light modulators. According to manipulation of the properties of material modulators are divided into two groups, absorptive modulators and refractive modulators. Absorption coefficient can be manipulated by Franz-Keldysh effect, Quantum-Confined Stark Effect, excitonic absorption, or changes of free carrier concentration. Usually, if several such effects appear together, the modulator is called electro-absorptive modulator. Refractive modulators most often make use of electro-optic effect, other modulators are made with acousto-optic effect, magneto-optic effect such as Faraday and Cotton-Mouton effects. The other case of modulators is spatial light modulator (SLM) which is modified two dimensional distribution of amplitude & phase of an optical wave.

<span class="mw-page-title-main">Photonic metamaterial</span> Type of electromagnetic metamaterial

A photonic metamaterial (PM), also known as an optical metamaterial, is a type of electromagnetic metamaterial, that interacts with light, covering terahertz (THz), infrared (IR) or visible wavelengths. The materials employ a periodic, cellular structure.

<span class="mw-page-title-main">Orbital angular momentum multiplexing</span> Optical multiplexing technique

Orbital angular momentum multiplexing is a physical layer method for multiplexing signals carried on electromagnetic waves using the orbital angular momentum (OAM) of the electromagnetic waves to distinguish between the different orthogonal signals.

<span class="mw-page-title-main">Hybrid plasmonic waveguide</span>

A hybrid plasmonic waveguide is an optical waveguide that achieves strong light confinement by coupling the light guided by a dielectric waveguide and a plasmonic waveguide. It is formed by separating a medium of high refractive index from a metal surface by a small gap.

<span class="mw-page-title-main">Plasmonics</span> Use of plasmons for data transmission in circuits

Plasmonics or nanoplasmonics refers to the generation, detection, and manipulation of signals at optical frequencies along metal-dielectric interfaces in the nanometer scale. Inspired by photonics, plasmonics follows the trend of miniaturizing optical devices, and finds applications in sensing, microscopy, optical communications, and bio-photonics.

<span class="mw-page-title-main">Electromagnetic metasurface</span>

An electromagnetic metasurface refers to a kind of artificial sheet material with sub-wavelength features. Metasurfaces can be either structured or unstructured with subwavelength-scaled patterns.

Integrated quantum photonics, uses photonic integrated circuits to control photonic quantum states for applications in quantum technologies. As such, integrated quantum photonics provides a promising approach to the miniaturisation and scaling up of optical quantum circuits. The major application of integrated quantum photonics is Quantum technology:, for example quantum computing, quantum communication, quantum simulation, quantum walks and quantum metrology.

An erbium-doped waveguide amplifier is a type of an optical amplifier enhanced with erbium. It is a close relative of an EDFA, erbium-doped fiber amplifier, and in fact EDWA's basic operating principles are identical to those of the EDFA. Both of them can be used to amplify infrared light at wavelengths in optical communication bands between 1500 and 1600 nm. However, whereas an EDFA is made using a free-standing fiber, an EDWA is typically produced on a planar substrate, sometimes in ways that are very similar to the methods used in electronic integrated circuit manufacturing. Therefore, the main advantage of EDWAs over EDFAs lies in their potential to be intimately integrated with other optical components on the same planar substrate and thus making EDFAs unnecessary.

<span class="mw-page-title-main">Juerg Leuthold</span> Swiss physicist

Juerg Leuthold is a full professor at ETH Zurich, Switzerland.

<span class="mw-page-title-main">Ravindra Kumar Sinha (physicist)</span> Indian physicist and administrator

Prof. R K Sinha is the Vice Chancellor of Gautam Buddha University, Greater Noida, Gautam Budh Nagar under Uttar Pradesh Government since January 2022. He was the Director of the CSIR-Central Scientific Instruments Organisation (CSIR-CSIO) Sector-30C, Chandigarh-160 030, India. He has been a Professor - Applied Physics, Dean-Academic [UG] & Chief Coordinator: TIFAC-Center of Relevance and Excellence in Fiber Optics and Optical Communication, Mission REACH Program, Technology Vision-2020, Govt. of India Delhi Technological University Bawana Road, Delhi-110042, India.

In photonics, a meta-waveguide is a physical structures that guides electromagnetic waves with engineered functional subwavelength structures. Meta-waveguides are the result of combining the fields of metamaterials and metasurfaces into integrated optics. The design of the subwavelength architecture allows exotic waveguiding phenomena to be explored.

References

  1. IBM Redbooks (9 November 1998). "5.4.6 Circulators". Understanding Optical Communications. IBM Corporation. ISBN   0738400580. Archived from the original on 2015-07-10. Retrieved 10 July 2015.
  2. Ribbens, William B. (1965). "An Optical Circulator". Applied Optics . 4 (8): 1037–1038. Bibcode:1965ApOpt...4.1037R. doi:10.1364/AO.4.001037.
  3. Hidetoshi, Iwamura; Hiroshi, Iwasaki; Kenichi, Kubodera; Yasuhiro, Torii; Juichi, Noda (1979). "Simple polarisation-independent optical circulator for optical transmission systems". Electronics Letters . 15 (25): 830–831. Bibcode:1979ElL....15..830H. doi:10.1049/el:19790590.
  4. Fuji, Y. (1991). "High-isolation polarization-independent optical circulator". Journal of Lightwave Technology . 9 (10): 1238–1243. Bibcode:1991JLwT....9.1238F. doi:10.1109/50.90921.
  5. Sugimoto, N.; Shintaku, T.; Tate, A.; Terui, H.; Shimokozono, M.; Kubota, E.; Ishii, M.; Inoue, Y. (1999). "Waveguide polarization-independent optical circulator". IEEE Photonics Technology Letters . 11 (3): 355–357. Bibcode:1999IPTL...11..355S. doi:10.1109/68.748233. S2CID   35722016.
  6. Takei, Ryohei; Mizumoto, Tetsuya (2010). "Design and Simulation of Silicon Waveguide Optical Circulator Employing Nonreciprocal Phase Shift". Japanese Journal of Applied Physics . 49 (52203): 052203. Bibcode:2010JaJAP..49e2203T. doi:10.1143/JJAP.49.052203. S2CID   19254463.
  7. Mitsuya, Kota; Shoji, Yuya; Mizumoto, Tetsuya (2013). "Demonstration of a Silicon Waveguide Optical Circulator". IEEE Photonics Technology Letters . 25 (8): 721–723. Bibcode:2013IPTL...25..721M. doi:10.1109/LPT.2013.2247995. S2CID   31886457.
  8. Pintus, Paolo; Huang, Duanni; Zhang, Chong; Shoji, Yuya; Mizumoto, Tetsuya; Bowers, John E. (2017). "Microring-Based Optical Isolator and Circulator with Integrated Electromagnet for Silicon Photonics". Journal of Lightwave Technology . 35 (8): 1429–1437. Bibcode:2017JLwT...35.1429P. doi: 10.1109/JLT.2016.2644626 . S2CID   32824770.
  9. Huang, Duanni; Pintus, Paolo; Zhang, Chong; Morton, Paul; Shoji, Yuya; Mizumoto, Tetsuya; Bowers, John E. (2017). "Dynamically reconfigurable integrated optical circulators". Optica . 4 (1): 23–30. Bibcode:2017Optic...4...23H. doi: 10.1364/OPTICA.4.000023 .
  10. Scheucher, Michael; Hilico, Adèle; Will, Elisa; Volz, Jürgen; Rauschenbeutel, Arno (2016). "Quantum optical circulator controlled by a single chirally coupled atom". Science . 354 (6319): 1577–1580. arXiv: 1609.02492 . Bibcode:2016Sci...354.1577S. doi:10.1126/science.aaj2118. PMID   27940579. S2CID   47714.
  11. Davoyan, Arthur R.; Engheta, Nader (2013). "Nanoscale plasmonic circulator". New Journal of Physics . 15 (83054): 083054. arXiv: 1302.5300 . Bibcode:2013NJPh...15h3054D. doi:10.1088/1367-2630/15/8/083054. S2CID   119232939.