This article needs additional citations for verification .(April 2021) |
Optimal virulence is a concept relating to the ecology of hosts and parasites. One definition of virulence is the host's parasite-induced loss of fitness. The parasite's fitness is determined by its success in transmitting offspring to other hosts. For about 100 years, the consensus was that virulence decreased and parasitic relationships evolved toward symbiosis. This was even called the law of declining virulence despite being a hypothesis, not even a theory. It has been challenged since the 1980s and has been disproved. [1] [2]
A pathogen that is too restrained will lose out in competition to a more aggressive strain that diverts more host resources to its own reproduction. However, the host, being the parasite's resource and habitat in a way, suffers from this higher virulence. This might induce faster host death, and act against the parasite's fitness by reducing probability to encounter another host (killing the host too fast to allow for transmission). Thus, there is a natural force providing pressure on the parasite to "self-limit" virulence. The idea is, then, that there exists an equilibrium point of virulence, where parasite's fitness is highest. Any movement on the virulence axis, towards higher or lower virulence, will result in lower fitness for the parasite, and thus will be selected against.
Paul W. Ewald has explored the relationship between virulence and mode of transmission. He came to the conclusion that virulence tends to remain especially high in waterborne and vector-borne infections, such as cholera and dengue. Cholera is spread through sewage and dengue through mosquitos. In the case of respiratory infections, the pathogen depends on an ambulatory host to survive. It must spare the host long enough to find a new host. Water- or vector-borne transmission circumvents the need for a mobile host. Ewald is convinced that the crowding of field hospitals and trench warfare provided an easy route to transmission that evolved the virulence of the 1918 influenza pandemic. In such immobilized, crowded conditions pathogens can make individuals very sick and still jump to healthy individuals.
Other epidemiologists have expanded on the idea of a tradeoff between costs and benefits of virulence. One factor is the time or distance between potential hosts. Airplane travel, crowded factory farms, and urbanization have all been suggested as possible sources of virulence. Another factor is the presence of multiple infections in a single host leading to increased competition among pathogens. In this scenario, the host can survive only as long as it resists the most virulent strains. The advantage of a low virulence strategy becomes moot. Multiple infections can also result in gene swapping among pathogens, increasing the likelihood of lethal combinations.
There are three main hypotheses about why a pathogen evolves as it does. These three models help to explain the life history strategies of parasites, including reproduction, migration within the host, virulence, etc. The three hypotheses are the trade-off hypothesis, the short-sighted evolution hypothesis, and the coincidental evolution hypothesis. All of these offer ultimate explanations for virulence in pathogens.
At one time, some biologists argued that pathogens would tend to evolve toward ever decreasing virulence because the death of the host (or even serious disability) is ultimately harmful to the pathogen living inside. For example, if the host dies, the pathogen population inside may die out entirely. Therefore, it was believed that less virulent pathogens that allowed the host to move around and interact with other hosts should have greater success reproducing and dispersing.
But this is not necessarily the case. Pathogen strains that kill the host can increase in virulence as long as the pathogen can transmit itself to a new host, whether before or after the host dies. The evolution of virulence in pathogens is a balance between the costs and benefits of virulence to the pathogen. For example, studies of the malaria parasite using rodent [3] and chicken [4] models found that there was trade-off between transmission success and virulence as defined by host mortality.
Short-sighted evolution suggests that the traits that increase reproduction rate and transmission to a new host will rise to high frequency within the pathogen population. These traits include the ability to reproduce sooner, reproduce faster, reproduce in higher numbers, live longer, survive against antibodies, or survive in parts of the body the pathogen does not normally infiltrate. These traits typically arise due to mutations, which occur more frequently in pathogen populations than in host populations, due to the pathogens' rapid generation time and immense numbers. After only a few generations, the mutations that enhance rapid reproduction or dispersal will increase in frequency. The same mutations that enhance the reproduction and dispersal of the pathogen also enhance its virulence in the host, causing much harm (disease and death). If the pathogen's virulence kills the host and interferes with its own transmission to a new host, virulence will be selected against. But as long as transmission continues despite the virulence, virulent pathogens will have the advantage. So, for example, virulence often increases within families, where transmission from one host to the next is likely, no matter how sick the host. Similarly, in crowded conditions such as refugee camps, virulence tends to increase over time since new hosts cannot escape the likelihood of infection.
Some forms of pathogenic virulence do not co-evolve with the host. For example, tetanus is caused by the soil bacterium Clostridium tetani . After C. tetani bacteria enter a human wound, the bacteria may grow and divide rapidly, even though the human body is not their normal habitat. While dividing, C. tetani produce a neurotoxin that is lethal to humans. But it is selection in the bacterium's normal life cycle in the soil that leads it to produce this toxin, not any evolution with a human host. The bacterium finds itself inside a human instead of in the soil by mere happenstance. We can say that the neurotoxin is not directed at the human host.
More generally, the virulence of many pathogens in humans may not be a target of selection itself, but rather an accidental by-product of selection that operates on other traits, as is the case with antagonistic pleiotropy.
A potential for virulence exists whenever a pathogen invades a new environment, host or tissue. The new host is likely to be poorly adapted to the intruder, either because it has not built up an immunological defense or because of a fortuitous vulnerability. In times of change, natural selection favors mutations that exploit the new host more effectively than the founder strain, providing an opportunity for virulence to erupt.
Host susceptibility contributes to virulence. Once transmission occurs, the pathogen must establish an infection to continue. The more competent the host immune system, the less chance there is for the parasite to survive. It may require multiple transmission events to find a suitably vulnerable host. During this time, the invader is dependent upon the survival of its current host. The optimum conditions for high virulence would be a community with immune dysfunction (and/or poor hygiene and sanitation) that was in all other ways as healthy as possible (eg optimum nutrition).
Parasitism is a close relationship between species, where one organism, the parasite, lives on or inside another organism, the host, causing it some harm, and is adapted structurally to this way of life. The entomologist E. O. Wilson characterised parasites as "predators that eat prey in units of less than one". Parasites include single-celled protozoans such as the agents of malaria, sleeping sickness, and amoebic dysentery; animals such as hookworms, lice, mosquitoes, and vampire bats; fungi such as honey fungus and the agents of ringworm; and plants such as mistletoe, dodder, and the broomrapes.
Virulence is a pathogen's or microorganism's ability to cause damage to a host.
Viral evolution is a subfield of evolutionary biology and virology that is specifically concerned with the evolution of viruses. Viruses have short generation times, and many—in particular RNA viruses—have relatively high mutation rates. Although most viral mutations confer no benefit and often even prove deleterious to viruses, the rapid rate of viral mutation combined with natural selection allows viruses to quickly adapt to changes in their host environment. In addition, because viruses typically produce many copies in an infected host, mutated genes can be passed on to many offspring quickly. Although the chance of mutations and evolution can change depending on the type of virus, viruses overall have high chances for mutations.
Serial passage is the process of growing bacteria or a virus in iterations. For instance, a virus may be grown in one environment, and then a portion of that virus population can be removed and put into a new environment. This process is repeated with as many stages as desired, and then the final product is studied, often in comparison with the original virus.
Sexual reproduction is an adaptive feature which is common to almost all multicellular organisms and various unicellular organisms. Currently, the adaptive advantage of sexual reproduction is widely regarded as a major unsolved problem in biology. As discussed below, one prominent theory is that sex evolved as an efficient mechanism for producing variation, and this had the advantage of enabling organisms to adapt to changing environments. Another prominent theory, also discussed below, is that a primary advantage of outcrossing sex is the masking of the expression of deleterious mutations. Additional theories concerning the adaptive advantage of sex are also discussed below. Sex does, however, come with a cost. In reproducing asexually, no time nor energy needs to be expended in choosing a mate and, if the environment has not changed, then there may be little reason for variation, as the organism may already be well-adapted. However, very few environments have not changed over the millions of years that reproduction has existed. Hence it is easy to imagine that being able to adapt to changing environment imparts a benefit. Sex also halves the amount of offspring a given population is able to produce. Sex, however, has evolved as the most prolific means of species branching into the tree of life. Diversification into the phylogenetic tree happens much more rapidly via sexual reproduction than it does by way of asexual reproduction.
A unit of selection is a biological entity within the hierarchy of biological organization that is subject to natural selection. There is debate among evolutionary biologists about the extent to which evolution has been shaped by selective pressures acting at these different levels.
Francisella tularensis is a pathogenic species of Gram-negative coccobacillus, an aerobic bacterium. It is nonspore-forming, nonmotile, and the causative agent of tularemia, the pneumonic form of which is often lethal without treatment. It is a fastidious, facultative intracellular bacterium, which requires cysteine for growth. Due to its low infectious dose, ease of spread by aerosol, and high virulence, F. tularensis is classified as a Tier 1 Select Agent by the U.S. government, along with other potential agents of bioterrorism such as Yersinia pestis, Bacillus anthracis, and Ebola virus. When found in nature, Francisella tularensis can survive for several weeks at low temperatures in animal carcasses, soil, and water. In the laboratory, F. tularensis appears as small rods, and is grown best at 35–37 °C.
A vertically transmitted infection is an infection caused by pathogenic bacteria or viruses that use mother-to-child transmission, that is, transmission directly from the mother to an embryo, fetus, or baby during pregnancy or childbirth. It can occur when the mother has a pre-existing disease or becomes infected during pregnancy. Nutritional deficiencies may exacerbate the risks of perinatal infections. Vertical transmission is important for the mathematical modelling of infectious diseases, especially for diseases of animals with large litter sizes, as it causes a wave of new infectious individuals.
Lysogeny, or the lysogenic cycle, is one of two cycles of viral reproduction. Lysogeny is characterized by integration of the bacteriophage nucleic acid into the host bacterium's genome or formation of a circular replicon in the bacterial cytoplasm. In this condition the bacterium continues to live and reproduce normally, while the bacteriophage lies in a dormant state in the host cell. The genetic material of the bacteriophage, called a prophage, can be transmitted to daughter cells at each subsequent cell division, and later events can release it, causing proliferation of new phages via the lytic cycle.
Any cause that reduces or increases reproductive success in a portion of a population potentially exerts evolutionary pressure, selective pressure or selection pressure, driving natural selection. It is a quantitative description of the amount of change occurring in processes investigated by evolutionary biology, but the formal concept is often extended to other areas of research.
Antigenic variation or antigenic alteration refers to the mechanism by which an infectious agent such as a protozoan, bacterium or virus alters the proteins or carbohydrates on its surface and thus avoids a host immune response, making it one of the mechanisms of antigenic escape. It is related to phase variation. Antigenic variation not only enables the pathogen to avoid the immune response in its current host, but also allows re-infection of previously infected hosts. Immunity to re-infection is based on recognition of the antigens carried by the pathogen, which are "remembered" by the acquired immune response. If the pathogen's dominant antigen can be altered, the pathogen can then evade the host's acquired immune system. Antigenic variation can occur by altering a variety of surface molecules including proteins and carbohydrates. Antigenic variation can result from gene conversion, site-specific DNA inversions, hypermutation, or recombination of sequence cassettes. The result is that even a clonal population of pathogens expresses a heterogeneous phenotype. Many of the proteins known to show antigenic or phase variation are related to virulence.
The Red Queen hypothesis is a hypothesis in evolutionary biology proposed in 1973, that species must constantly adapt, evolve, and proliferate in order to survive while pitted against ever-evolving opposing species. The hypothesis was intended to explain the constant (age-independent) extinction probability as observed in the paleontological record caused by co-evolution between competing species; however, it has also been suggested that the Red Queen hypothesis explains the advantage of sexual reproduction at the level of individuals, and the positive correlation between speciation and extinction rates in most higher taxa.
Avian malaria is a parasitic disease of birds, caused by parasite species belonging to the genera Plasmodium and Hemoproteus. The disease is transmitted by a dipteran vector including mosquitoes in the case of Plasmodium parasites and biting midges for Hemoproteus. The range of symptoms and effects of the parasite on its bird hosts is very wide, from asymptomatic cases to drastic population declines due to the disease, as is the case of the Hawaiian honeycreepers. The diversity of parasites is large, as it is estimated that there are approximately as many parasites as there are species of hosts. As research on human malaria parasites became difficult, Dr. Ross studied avian malaria parasites. Co-speciation and host switching events have contributed to the broad range of hosts that these parasites can infect, causing avian malaria to be a widespread global disease, found everywhere except Antarctica.
Evolution of Infectious Disease is a 1993 book by the evolutionary biologist Paul W. Ewald. In this book, Ewald contests the traditional view that parasites should evolve toward benign coexistence with their hosts. He draws on various studies that contradict this dogma and asserts his theory based on fundamental evolutionary principles. This book provides one of the first in-depth presentations of insights from evolutionary biology on various fields in health science, including epidemiology and medicine.
Experimental evolution studies are a means of testing evolutionary theory under carefully designed, reproducible experiments. Given enough time, space, and money, any organism could be used for experimental evolution studies. However, those with rapid generation times, high mutation rates, large population sizes, and small sizes increase the feasibility of experimental studies in a laboratory context. For these reasons, bacteriophages are especially favored by experimental evolutionary biologists. Bacteriophages, and microbial organisms, can be frozen in stasis, facilitating comparison of evolved strains to ancestors. Additionally, microbes are especially labile from a molecular biologic perspective. Many molecular tools have been developed to manipulate the genetic material of microbial organisms, and because of their small genome sizes, sequencing the full genomes of evolved strains is trivial. Therefore, comparisons can be made for the exact molecular changes in evolved strains during adaptation to novel conditions.
Host–parasite coevolution is a special case of coevolution, where a host and a parasite continually adapt to each other. This can create an evolutionary arms race between them. A more benign possibility is of an evolutionary trade-off between transmission and virulence in the parasite, as if it kills its host too quickly, the parasite will not be able to reproduce either. Another theory, the Red Queen hypothesis, proposes that since both host and parasite have to keep on evolving to keep up with each other, and since sexual reproduction continually creates new combinations of genes, parasitism favours sexual reproduction in the host.
When considering pathogens, host adaptation can have varying descriptions. For example, in the case of Salmonella, host adaptation is used to describe the "ability of a pathogen to circulate and cause disease in a particular host population." Another usage of host adaptation, still considering the case of Salmonella, refers to the evolution of a pathogen such that it can infect, cause disease, and circulate in another host species.
Andrew Fraser Read FRS is Evan Pugh professor of biology and entomology at Pennsylvania State University and the Director of the Huck Institutes of the Life Sciences.
This glossary of virology is a list of definitions of terms and concepts used in virology, the study of viruses, particularly in the description of viruses and their actions. Related fields include microbiology, molecular biology, and genetics.
In parasitology and epidemiology, a host switch is an evolutionary change of the host specificity of a parasite or pathogen. For example, the human immunodeficiency virus used to infect and circulate in non-human primates in West-central Africa, but switched to humans in the early 20th century.
The trade-off model is now widely accepted. It emphasises that each host-pathogen combination must be considered individually. There is no general evolutionary law for predicting how these relationships will pan out, and certainly no justification for evoking the inevitability of decreased virulence.
There is little or no direct evidence that virulence decreases over time. While newly emerged pathogens, such as HIV and Mers, are often highly virulent, the converse is not true. There are plenty of ancient diseases, such as tuberculosis and gonorrhoea, that are probably just as virulent today as they ever were.