Order (mathematics)

Last updated

Order in mathematics may refer to:

Contents

Set theory

In mathematics, a linear order, total order, simple order, or (non-strict) ordering is a binary relation on some set , which is antisymmetric, transitive, and a connex relation. A set paired with a total order is called a totally ordered set, a linearly ordered set, a simply ordered set, or a chain.

Ramsey theory, named after the British mathematician and philosopher Frank P. Ramsey, is a branch of mathematics that studies the conditions under which order must appear. Problems in Ramsey theory typically ask a question of the form: "how many elements of some structure must there be to guarantee that a particular property will hold?" More specifically, Ron Graham describes Ramsey theory as a "branch of combinatorics".

Algebra

Order (group theory) cardinality of a group, or where the element a of a group is the smallest positive integer m such that am = e

In group theory, a branch of mathematics, the term order is used in two unrelated senses:

Square matrix matrix with the same number of rows and columns

In mathematics, a square matrix is a matrix with the same number of rows and columns. An n-by-n matrix is known as a square matrix of order n. Any two square matrices of the same order can be added and multiplied.

In mathematics, an order in the sense of ring theory is a subring of a ring , such that

  1. A is a ring which is a finite-dimensional algebra over the rational number field
  2. spans A over , so that , and
  3. is a -lattice in A.

Analysis

Non-uniform rational B-spline

Non-uniform rational basis spline (NURBS) is a mathematical model commonly used in computer graphics for generating and representing curves and surfaces. It offers great flexibility and precision for handling both analytic and modeled shapes. NURBS are commonly used in computer-aided design (CAD), manufacturing (CAM), and engineering (CAE) and are part of numerous industry wide standards, such as IGES, STEP, ACIS, and PHIGS. NURBS tools are also found in various 3D modeling and animation software packages.

In complex analysis, an entire function, also called an integral function, is a complex-valued function that is holomorphic at all finite points over the whole complex plane. Typical examples of entire functions are polynomials and the exponential function, and any finite sums, products and compositions of these, such as the trigonometric functions sine and cosine and their hyperbolic counterparts sinh and cosh, as well as derivatives and integrals of entire functions such as the error function. If an entire function f(z) has a root at w, then f(z)/(z−w), taking the limit value at w, is an entire function. On the other hand, neither the natural logarithm nor the square root is an entire function, nor can they be continued analytically to an entire function.

Sequence ordered list of elements; function with natural numbers as domain

In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed. Like a set, it contains members. The number of elements is called the length of the sequence. Unlike a set, the same elements can appear multiple times at different positions in a sequence, and order matters. Formally, a sequence can be defined as a function whose domain is either the set of the natural numbers or the set of the first n natural numbers. The position of an element in a sequence is its rank or index; it is the natural number from which the element is the image. It depends on the context or a specific convention, if the first element has index 0 or 1. When a symbol has been chosen for denoting a sequence, the nth element of the sequence is denoted by this symbol with n as subscript; for example, the nth element of the Fibonacci sequence is generally denoted Fn.

Arithmetic

In number theory, given an integer a and a positive integer n with gcd(a,n) = 1, the multiplicative order of a modulo n is the smallest positive integer k with

In mathematics and computer programming, the order of operations is a collection of rules that reflect conventions about which procedures to perform first in order to evaluate a given mathematical expression.

Combinatorics

Bijection one to one and onto mapping of a set X to a set Y

In mathematics, a bijection, bijective function, or one-to-one correspondence is a function between the elements of two sets, where each element of one set is paired with exactly one element of the other set, and each element of the other set is paired with exactly one element of the first set. There are no unpaired elements. In mathematical terms, a bijective function f: XY is a one-to-one (injective) and onto (surjective) mapping of a set X to a set Y.

Cyclic order

In mathematics, a cyclic order is a way to arrange a set of objects in a circle. Unlike most structures in order theory, a cyclic order is not modeled as a binary relation, such as "a < b". One does not say that east is "more clockwise" than west. Instead, a cyclic order is defined as a ternary relation [a, b, c], meaning "after a, one reaches b before c". For example, [June, October, February]. A ternary relation is called a cyclic order if it is cyclic, asymmetric, transitive, and total. Dropping the "total" requirement results in a partial cyclic order.

Permutation Arrangements of a list or set

In mathematics, permutation is the act of arranging the members of a set into a sequence or order, or, if the set is already ordered, rearranging (reordering) its elements—a process called permuting. Permutations differ from combinations, which are selections of some members of a set regardless of order. For example, written as tuples, there are six permutations of the set {1,2,3}, namely: (1,2,3), (1,3,2), (2,1,3), (2,3,1), (3,1,2), and (3,2,1). These are all the possible orderings of this three-element set. Anagrams of words whose letters are different are also permutations: the letters are already ordered in the original word, and the anagram is a reordering of the letters. The study of permutations of finite sets is an important topic in the fields of combinatorics and group theory.

Fractals

The word complexor was coined by Marcial Losada derived from the words "complex order", to refer to chaotic attractors that are strange and thus have fractal structure.

Lakes of Wada

In mathematics, the lakes of Wada are three disjoint connected open sets of the plane or open unit square with the counterintuitive property that they all have the same boundary. In other words, for any point selected on the boundary of one of the lakes, the other two lakes' boundaries also contain that point.

In mathematics, more specifically in fractal geometry, a fractal dimension is a ratio providing a statistical index of complexity comparing how detail in a pattern changes with the scale at which it is measured. It has also been characterized as a measure of the space-filling capacity of a pattern that tells how a fractal scales differently from the space it is embedded in; a fractal dimension does not have to be an integer.

Geometry

Graphs

Logic

In logic, model theory and type theory:

Order theory

Statistics

Related Research Articles

Combinatorics is an area of mathematics primarily concerned with counting, both as a means and an end in obtaining results, and certain properties of finite structures. It is closely related to many other areas of mathematics and has many applications ranging from logic to statistical physics, from evolutionary biology to computer science, etc.

Discrete mathematics study of discrete mathematical structures

Discrete mathematics is the study of mathematical structures that are fundamentally discrete rather than continuous. In contrast to real numbers that have the property of varying "smoothly", the objects studied in discrete mathematics – such as integers, graphs, and statements in logic – do not vary smoothly in this way, but have distinct, separated values. Discrete mathematics therefore excludes topics in "continuous mathematics" such as calculus or Euclidean geometry. Discrete objects can often be enumerated by integers. More formally, discrete mathematics has been characterized as the branch of mathematics dealing with countable sets. However, there is no exact definition of the term "discrete mathematics." Indeed, discrete mathematics is described less by what is included than by what is excluded: continuously varying quantities and related notions.

Partially ordered set set ordered by a transitive, antisymmetric, and reflexive binary relation

In mathematics, especially order theory, a partially ordered set formalizes and generalizes the intuitive concept of an ordering, sequencing, or arrangement of the elements of a set. A poset consists of a set together with a binary relation indicating that, for certain pairs of elements in the set, one of the elements precedes the other in the ordering. The word "partial" in the names "partial order" or "partially ordered set" is used as an indication that not every pair of elements needs to be comparable. That is, there may be pairs of elements for which neither element precedes the other in the poset. Partial orders thus generalize total orders, in which every pair is comparable.

In mathematics, especially in order theory, a preorder or quasiorder is a binary relation that is reflexive and transitive. Preorders are more general than equivalence relations and (non-strict) partial orders, both of which are special cases of a preorder. An antisymmetric preorder is a partial order, and a symmetric preorder is an equivalence relation.

Discrete mathematics is the study of mathematical structures that are fundamentally discrete rather than continuous. In contrast to real numbers that have the property of varying "smoothly", the objects studied in discrete mathematics – such as integers, graphs, and statements in logic – do not vary smoothly in this way, but have distinct, separated values. Discrete mathematics therefore excludes topics in "continuous mathematics" such as calculus and analysis.

Order theory is a branch of mathematics which investigates the intuitive notion of order using binary relations. It provides a formal framework for describing statements such as "this is less than that" or "this precedes that". This article introduces the field and provides basic definitions. A list of order-theoretic terms can be found in the order theory glossary.

In mathematics, the term mapping, sometimes shortened to map, refers to either a function, often with some sort of special structure, in particular when the relation is taken together with a set that constitutes the codomain, or a morphism in category theory, which generalizes the idea of a function. There are also a few, less common uses in logic and graph theory.

This article itemizes the various lists of mathematics topics. Some of these lists link to hundreds of articles; some link only to a few. The template to the right includes links to alphabetical lists of all mathematical articles. This article brings together the same content organized in a manner better suited for browsing.

Mathematics encompasses a growing variety and depth of subjects over history, and comprehension requires a system to categorize and organize the many subjects into more general areas of mathematics. A number of different classification schemes have arisen, and though they share some similarities, there are differences due in part to the different purposes they serve. In addition, as mathematics continues to be developed, these classification schemes must change as well to account for newly created areas or newly discovered links between different areas. Classification is made more difficult by some subjects, often the most active, which straddle the boundary between different areas.

Symmetry in mathematics symmetry in mathematics

Symmetry occurs not only in geometry, but also in other branches of mathematics. Symmetry is a type of invariance: the property that something does not change under a set of transformations.

Algebra is one of the broad parts of mathematics, together with number theory, geometry and analysis. In its most general form, algebra is the study of mathematical symbols and the rules for manipulating these symbols; it is a unifying thread of almost all of mathematics. It includes everything from elementary equation solving to the study of abstractions such as groups, rings, and fields. The more basic parts of algebra are called elementary algebra; the more abstract parts are called abstract algebra or modern algebra. Elementary algebra is generally considered to be essential for any study of mathematics, science, or engineering, as well as such applications as medicine and economics. Abstract algebra is a major area in advanced mathematics, studied primarily by professional mathematicians.

Abstract algebra branch of mathematics

In algebra, which is a broad division of mathematics, abstract algebra is the study of algebraic structures. Algebraic structures include groups, rings, fields, modules, vector spaces, lattices, and algebras. The term abstract algebra was coined in the early 20th century to distinguish this area of study from the other parts of algebra.

Real number Number representing a continuous quantity

In mathematics, a real number is a value of a continuous quantity that can represent a distance along a line. The adjective real in this context was introduced in the 17th century by René Descartes, who distinguished between real and imaginary roots of polynomials. The real numbers include all the rational numbers, such as the integer −5 and the fraction 4/3, and all the irrational numbers, such as 2. Included within the irrationals are the transcendental numbers, such as π (3.14159265...). In addition to measuring distance, real numbers can be used to measure quantities such as time, mass, energy, velocity, and many more.

This is a glossary of terms that are or have been considered areas of study in mathematics.