PERDaix

Last updated

PERDaix (Proton Electron Radiation Detector Aix-la-Chapelle) is a novel, small and light weight magnetic spectrometer to measure the charge and mass dependent solar modulation periodically for deeper understanding of cosmic rays. [1] For a better understanding of sources and acceleration of cosmic particles direct measurements of cosmic rays are necessary. Also for a better understanding of the solar modulation which is expected to follow the 22-year solar cycle, time dependent measurements are needed. [2] PERDaix is a newly designed detector which is constructed by the Department of Physics 1b, RWTH Aachen University. Being proposed to the German Space Agency in November 2009 for a participation in the BEXUS Program (Rocket and Balloon Experiments for University Students) after a first canceled flight attempt in October 2010 the actual flight took place as a post-BEXUS-campaign flight opportunity in November 2010.

Contents

The detector is able to measure charged particles in the energy range of 0.5 GeV to 5 GeV. PERDaix uses a time of flight system, a scintillating fiber tracker with silicon photomultiplier (SiPM) readout, and a transition radiation detector in combination with a permanent magnet to measure particle fluxes. [3] The BEXUS balloons are launched at Esrange Space Center near Kiruna, Sweden. In November 2010 PERDaix reached a top altitude of 33.3 km at which it kept floating for 1.5 hours.

Sub-detectors

Time of flight system

The time of flight system (TOF) is the upper- and lowermost layer of the detector. It consists of scintillators with an SiPM readout. It is used as a trigger signal and to discriminate against particles entering the detector from below. With a design time resolution of approximately 300 picoseconds (ps) it can be used to distinguish between positrons and electrons in the momentum range below 1 GeV. Protons can be distinguished from positrons for momenta below 1 GeV if their velocity is lower than β = 1. [4]

Tracker

Perdaix will make use of a scintillating fiber tracking detector made up from 250 µm thin scintillating polystyrene fibers that emit light when traversed by a charged particle. The scintillating fibers are read out by silicon photomultiplier (SiPM) arrays which are structured semi-conductor photon detectors that offer high photon efficiencies of 50%, a high gain of 10^6 electrons / photon and that are very compact in size. One silicon photomultiplier array is 1.1mm by 8.0mm in size and has 32 channels. Twenty 32mm wide and 300mm long fiber modules are arranged in four layers around a hollow cylindrical permanent magnet array.

Magnet

The permanent magnet array is constructed as a Halbach-Ring and weighs 8 kg and produces a very high magnetic field of ~0.26 Tesla (T) inside an 80mm high and 213mm diameter magnet cylinder while producing only a negligible magnetic field outside the cylinder.

Transition radiation detector

Underneath the lowest tracker layer a transition radiation detector (TRD) is installed. The TRD detects transition radiation of relativistic particles with a Lorentz factor γ exceeding ≈ 1000. Particles crossing the interface of two media with different dielectric constant produce transition radiation. The energy loss at a boundary is proportional to the relativistic gamma factor. A significant amount of TR is produced for a gamma greater than 1000. The gamma factor of protons is, up to a momentum of 5GeV, still in the order of 10, whereas the positron's gamma is greater than 1000, starting at 0.5GeV momentum.

The detector is made up of 256 6mm thick straw tubes out of a 72 um thin multilayer aluminium-kapton foil, filled with an 80/20 mixture of xenon (Xe) and carbon dioxide (CO2). It is used to measure the x-ray transition radiation produced by electrons in eight 20mm thick layers of an irregular fleece radiator. This leads to more than 100 material interfaces per radiator layer.

Launch in November 2010

Due to strong winds the launch campaign in October 2010 had to be canceled without a BEXUS-11 flight at first. Thanks to the support of German Space Agency (DLR) and Esrange a second flight opportunity was provided in late November 2010. On 23 November a 100 000 m³ helium balloon was launched from Esrange carrying a payload of 334 kg containing the BEXUS student experiments including the PERDaix detector.

Sources

Related Research Articles

Beta particle Ionizing radiation

A beta particle, also called beta ray or beta radiation, is a high-energy, high-speed electron or positron emitted by the radioactive decay of an atomic nucleus during the process of beta decay. There are two forms of beta decay, β decay and β+ decay, which produce electrons and positrons respectively.

Cosmic ray High-energy particle, mainly originating outside the Solar system

Cosmic rays are high-energy protons and atomic nuclei that move through space at nearly the speed of light. They originate from the Sun, from outside of the Solar System in our own galaxy, and from distant galaxies. Upon impact with Earth's atmosphere, cosmic rays produce showers of secondary particles, some of which reach the surface, although the bulk is deflected off into space by the magnetosphere or the heliosphere.

Scintillation counter Measurement device

A scintillation counter is an instrument for detecting and measuring ionizing radiation by using the excitation effect of incident radiation on a scintillating material, and detecting the resultant light pulses.

In experimental and applied particle physics, nuclear physics, and nuclear engineering, a particle detector, also known as a radiation detector, is a device used to detect, track, and/or identify ionizing particles, such as those produced by nuclear decay, cosmic radiation, or reactions in a particle accelerator. Detectors can measure the particle energy and other attributes such as momentum, spin, charge, particle type, in addition to merely registering the presence of the particle.

Compton Gamma Ray Observatory NASA space observatory designed to detect X-rays and gamma rays (1991-2000)

The Compton Gamma Ray Observatory (CGRO) was a space observatory detecting photons with energies from 20 keV to 30 GeV, in Earth orbit from 1991 to 2000. The observatory featured four main telescopes in one spacecraft, covering X-rays and gamma rays, including various specialized sub-instruments and detectors. Following 14 years of effort, the observatory was launched from Space Shuttle Atlantis during STS-37 on April 5, 1991, and operated until its deorbit on June 4, 2000. It was deployed in low Earth orbit at 450 km (280 mi) to avoid the Van Allen radiation belt. It was the heaviest astrophysical payload ever flown at that time at 17,000 kilograms (37,000 lb).

Gamma camera Camera to record gamma radiation

A gamma camera (γ-camera), also called a scintillation camera or Anger camera, is a device used to image gamma radiation emitting radioisotopes, a technique known as scintigraphy. The applications of scintigraphy include early drug development and nuclear medical imaging to view and analyse images of the human body or the distribution of medically injected, inhaled, or ingested radionuclides emitting gamma rays.

Scintigraphy Diagnostic imaging test in nuclear medicine

Scintigraphy, also known as a gamma scan, is a diagnostic test in nuclear medicine, where radioisotopes attached to drugs that travel to a specific organ or tissue (radiopharmaceuticals) are taken internally and the emitted gamma radiation is captured by external detectors to form two-dimensional images in a similar process to the capture of x-ray images. In contrast, SPECT and positron emission tomography (PET) form 3-dimensional images and are therefore classified as separate techniques from scintigraphy, although they also use gamma cameras to detect internal radiation. Scintigraphy is unlike a diagnostic X-ray where external radiation is passed through the body to form an image.

Explorer 11 NASA satellite of the Explorer program

Explorer 11 was a NASA satellite that carried the first space-borne gamma-ray telescope. This marked the beginning of space gamma-ray astronomy. Launched on 27 April 1961 by a Juno II, the satellite returned data until 17 November 1961, when power supply problems ended the science mission. During the spacecraft's seven-month lifespan it detected twenty-two events from gamma-rays and approximately 22,000 events from cosmic radiation.

HERA (particle accelerator)

HERA was a particle accelerator at DESY in Hamburg. It began operating in 1992. At HERA, electrons or positrons were collided with protons at a center of mass energy of 318 GeV. It was the only lepton-proton collider in the world while operating. Also, it was on the energy frontier in certain regions of the kinematic range. HERA was closed down on 30 June 2007.

Photodetector Sensors of light or other electromagnetic energy

Photodetectors, also called photosensors, are sensors of light or other electromagnetic radiation. There is a wide variety of photodetectors which may be classified by mechanism of detection, such as photoelectric or photochemical effects, or by various performance metrics, such as spectral response. Semiconductor-based photodetectors typically photo detector have a p–n junction that converts light photons into current. The absorbed photons make electron–hole pairs in the depletion region. Photodiodes and photo transistors are a few examples of photo detectors. Solar cells convert some of the light energy absorbed into electrical energy.

Air shower (physics) Cascade of ionized particles and electromagnetic radiation when cosmic ray enters the atmosphere

An air shower is an extensive cascade of ionized particles and electromagnetic radiation produced in the atmosphere when a primary cosmic ray enters the atmosphere. When a particle, which could be a proton, a nucleus, an electron, a photon, or (rarely) a positron, strikes an atom's nucleus in the air it produces many energetic hadrons. The unstable hadrons decay in the air speedily into other particles and electromagnetic radiation, which are part of the particle shower components. The secondary radiation rains down, including x-rays, muons, protons, antiprotons, alpha particles, pions, electrons, positrons, and neutrons.

Gamma-ray spectroscopy is the quantitative study of the energy spectra of gamma-ray sources, such as in the nuclear industry, geochemical investigation, and astrophysics.

ALICE experiment Detector experiments at the Large Hadron Collider

ALICE is one of eight detector experiments at the Large Hadron Collider at CERN. The other seven are: ATLAS, CMS, TOTEM, LHCb, LHCf, MoEDAL and FASER.

IACT

IACT stands for Imaging AtmosphericCherenkov Telescope or Technique. It is a device or method to detect very-high-energy gamma ray photons in the photon energy range of 50 GeV to 50 TeV.

Neutrino detector Physics apparatus which is designed to study neutrinos

A neutrino detector is a physics apparatus which is designed to study neutrinos. Because neutrinos only weakly interact with other particles of matter, neutrino detectors must be very large to detect a significant number of neutrinos. Neutrino detectors are often built underground, to isolate the detector from cosmic rays and other background radiation. The field of neutrino astronomy is still very much in its infancy – the only confirmed extraterrestrial sources as of 2018 are the Sun and the supernova 1987A in the nearby Large Magellanic Cloud. Another likely source is the blazar TXS 0506+056 about 3.7 billion light years away. Neutrino observatories will "give astronomers fresh eyes with which to study the universe".

NA62 experiment

The NA62 experiment is a fixed-target particle physics experiment in the North Area of the SPS accelerator at CERN. The experiment was approved in February 2007. Data taking began in 2015, and the experiment is expected to become the first in the world to probe the decays of the charged kaon with probabilities down to 10−12. The experiment's spokesperson is Cristina Lazzeroni. The collaboration involves 333 individuals from 30 institutions and 13 countries around the world.

X-ray astronomy detector

X-ray astronomy detectors are instruments that detect X-rays for use in the study of X-ray astronomy.

ZEPLIN-III

The ZEPLIN-III dark matter experiment attempted to detect galactic WIMPs using a 12 kg liquid xenon target. It operated at the Boulby Underground Laboratory in the period 2006–2011. This was the last in a series of xenon-based experiments in the ZEPLIN programme pursued originally by the UK Dark Matter Collaboration (UKDMC). The ZEPLIN-III project was led by Imperial College London and also included the Rutherford Appleton Laboratory and the University of Edinburgh in the UK, as well as LIP-Coimbra in Portugal and ITEP-Moscow in Russia. It ruled out cross-sections for elastic scattering of WIMPs off nucleons above 3.9 × 10−8 pb from the two science runs conducted at Boulby.

LZ experiment Experiment in South Dakota, United States

The LUX-ZEPLIN (LZ) Experiment is a next-generation dark matter direct detection experiment hoping to observe weakly interacting massive particles (WIMP) scatters on nuclei. It was formed in 2012 by combining the LUX and ZEPLIN groups. It is currently a collaboration of 30 institutes in the US, UK, Portugal and Russia. The experiment is located at the Sanford Underground Research Facility (SURF) in South Dakota, and is managed by DOE's Lawrence Berkeley National Lab.

The Beijing Spectrometer III is a particle physics experiment at the Beijing Electron–Positron Collider II at the Institute of High Energy Physics (IHEP). It is designed to study the physics of charm, charmonium, and light hadron decays. It also performs studies of the tau lepton, tests of QCD, and searches for physics beyond the Standard Model. The experiment started collecting data in the summer of 2008.