Silicon photomultiplier

Last updated
One of the first SiPM produced by FBK research center (formerly IRST) located in Trento, Italy. SiPM IRST.JPG
One of the first SiPM produced by FBK research center (formerly IRST) located in Trento, Italy.

In solid-state electronics, silicon photomultipliers (SiPMs) are single-photon-sensitive devices based on single-photon avalanche diodes (SPADs) implemented on common silicon substrate. [1] The dimension of each single SPAD can vary from 10 to 100 micrometres, with a density of up to 10,000 per square millimeter. Every SPAD in a SiPM operates in Geiger mode and is coupled with the others by a metal or polysilicon quenching resistor. Although the device works in digital/switching mode, most SiPMs are analog devices because the microcells are read in parallel, making it possible to generate signals with a dynamic range from a single photon to 1000 photons for a device with just a square-millimeter area. More advanced readout schemes are used for lidar applications. [2] The supply voltage (Vb) depends on the APD technology used and typically varies between 20 V and 100 V, thus being from 15 to 75 times lower than the voltage required for traditional photomultiplier tube (PMT) operation.

Contents

Typical specifications for a SiPM:

SiPM for medical imaging are attractive candidates for the replacement of the conventional PMT in positron emission tomography (PET) and SPECT imaging, since they provide high gain with low voltage and fast response, they are very compact and compatible with magnetic resonance setups. Nevertheless, there are still several challenges, for example, SiPM requires optimization for larger matrices, signal amplification and digitization.

Comparison to vacuum tube photomultipliers

Advantages

Compared to conventional PMTs, the photoelectron gain in SiPMs is typically more deterministic, resulting in low or even negligible excess noise factor. As a result, the SNR (Signal-to-noise ratio) for a fixed number of detected photons can be higher than that from a PMT. Conversely, the stochastic gain of a PMT typically requires more detected photons to obtain the same SNR.

Mass production of silicon electronics by multiple vendors allows SiPMs to be made very cheaply relative to vacuum tubes.

Bias voltages are 10-100x times lower, simplifying electronics.

In the red to near-infrared, silicon enables much higher quantum efficiency than available PMT photocathode materials.

Dynamic range can be orders of magnitude larger than a PMT if large numbers of SPADs are arrayed together, enabling faster imaging rates or higher SNR without saturation.

Disadvantages

Dark current is typically much higher at a given temperature than a PMT. Thus, a SiPM may require subambient cooling while a PMT used in the same application may not, resulting in increased complexity and cost. Similarly, obtaining large active areas may be difficult due to higher dark counts per area than in PMTs.

The impulse response of a SiPM has a complex, multiexponential shape. Relative to a PMT, obtaining a symmetric pulse shape or uniform frequency response may require more complex analog filtering or pulse shaping electronics.

Comparison to avalanche photodiodes

Conventional avalanche photodiodes (APDs) also produce an amplified analog current in response to light absorption. However, in an APD, the total gain is much lower and the excess noise factor much higher. Conversely, quantum efficiency can be higher and dark noise lower.

See also

Related Research Articles

<span class="mw-page-title-main">Charge-coupled device</span> Device for the movement of electrical charge

A charge-coupled device (CCD) is an integrated circuit containing an array of linked, or coupled, capacitors. Under the control of an external circuit, each capacitor can transfer its electric charge to a neighboring capacitor. CCD sensors are a major technology used in digital imaging.

<span class="mw-page-title-main">Amplifier</span> Electronic device/component that increases the strength of a signal

An amplifier, electronic amplifier or (informally) amp is an electronic device that can increase the magnitude of a signal. It is a two-port electronic circuit that uses electric power from a power supply to increase the amplitude of a signal applied to its input terminals, producing a proportionally greater amplitude signal at its output. The amount of amplification provided by an amplifier is measured by its gain: the ratio of output voltage, current, or power to input. An amplifier is defined as a circuit that has a power gain greater than one.

<span class="mw-page-title-main">Analog-to-digital converter</span> System that converts an analog signal into a digital signal

In electronics, an analog-to-digital converter is a system that converts an analog signal, such as a sound picked up by a microphone or light entering a digital camera, into a digital signal. An ADC may also provide an isolated measurement such as an electronic device that converts an analog input voltage or current to a digital number representing the magnitude of the voltage or current. Typically the digital output is a two's complement binary number that is proportional to the input, but there are other possibilities.

<span class="mw-page-title-main">Photodiode</span> Converts light into current

A photodiode is a semiconductor diode sensitive to photon radiation, such as visible light, infrared or ultraviolet radiation, X-rays and gamma rays. It produces an electrical current when it absorbs photons. This can be used for detection and measurement applications, or for the generation of electrical power in solar cells. Photodiodes are used in a wide range of applications throughout the electromagnetic spectrum from visible light photocells to gamma ray spectrometers.

<span class="mw-page-title-main">Photomultiplier tube</span> Fast, high sensitivty, low noise electronic photon detector

Photomultiplier tubes (photomultipliers or PMTs for short) are extremely sensitive detectors of light in the ultraviolet, visible, and near-infrared ranges of the electromagnetic spectrum. They are members of the class of vacuum tubes, more specifically vacuum phototubes. These detectors multiply the current produced by incident light by as much as 100 million times or 108 (i.e., 160 dB), in multiple dynode stages, enabling (for example) individual photons to be detected when the incident flux of light is low.

<span class="mw-page-title-main">Scintillation counter</span> Instrument for measuring ionizing radiation

A scintillation counter is an instrument for detecting and measuring ionizing radiation by using the excitation effect of incident radiation on a scintillating material, and detecting the resultant light pulses.

An avalanche photodiode (APD) is a highly sensitive semiconductor photodiode detector that exploits the photoelectric effect to convert light into electricity. From a functional standpoint, they can be regarded as the semiconductor analog of photomultiplier tubes. The avalanche photodiode was invented by Japanese engineer Jun-ichi Nishizawa in 1952. However, study of avalanche breakdown, microplasma defects in silicon and germanium and the investigation of optical detection using p-n junctions predate this patent. Typical applications for APDs are laser rangefinders, long-range fiber-optic telecommunication, and quantum sensing for control algorithms. New applications include positron emission tomography and particle physics.

<span class="mw-page-title-main">Preamplifier</span> Electronic amplifier that converts weak signal into strong signal

A preamplifier, also known as a preamp, is an electronic amplifier that converts a weak electrical signal into an output signal strong enough to be noise-tolerant and strong enough for further processing, or for sending to a power amplifier and a loudspeaker. Without this, the final signal would be noisy or distorted. They are typically used to amplify signals from analog sensors such as microphones and pickups. Because of this, the preamplifier is often placed close to the sensor to reduce the effects of noise and interference.

<span class="mw-page-title-main">Single-photon avalanche diode</span> Solid-state photodetector

A single-photon avalanche diode (SPAD) is a solid-state photodetector within the same family as photodiodes and avalanche photodiodes (APDs), while also being fundamentally linked with basic diode behaviours. As with photodiodes and APDs, a SPAD is based around a semi-conductor p-n junction that can be illuminated with ionizing radiation such as gamma, x-rays, beta and alpha particles along with a wide portion of the electromagnetic spectrum from ultraviolet (UV) through the visible wavelengths and into the infrared (IR).

<span class="mw-page-title-main">Photodetector</span> Sensors of light or other electromagnetic energy

Photodetectors, also called photosensors, are sensors of light or other electromagnetic radiation. There are a wide variety of photodetectors which may be classified by mechanism of detection, such as photoelectric or photochemical effects, or by various performance metrics, such as spectral response. Semiconductor-based photodetectors typically use a p–n junction that converts photons into charge. The absorbed photons make electron–hole pairs in the depletion region. Photodiodes and photo transistors are a few examples of photo detectors. Solar cells convert some of the light energy absorbed into electrical energy.

<span class="mw-page-title-main">Gamma spectroscopy</span> Quantitative study of the energy spectra of gamma-ray sources

Gamma-ray spectroscopy is the qualitative study of the energy spectra of gamma-ray sources, such as in the nuclear industry, geochemical investigation, and astrophysics. Gamma-ray spectrometry, on the other hand, is the method used to acquire a quantitative spectrum measurement.

<span class="mw-page-title-main">Image noise</span> Visible interference in an image

Image noise is random variation of brightness or color information in images, and is usually an aspect of electronic noise. It can be produced by the image sensor and circuitry of a scanner or digital camera. Image noise can also originate in film grain and in the unavoidable shot noise of an ideal photon detector. Image noise is an undesirable by-product of image capture that obscures the desired information. Typically the term “image noise” is used to refer to noise in 2D images, not 3D images.

<span class="mw-page-title-main">Resonance-enhanced multiphoton ionization</span> Spectroscopy technique

Resonance-enhanced multiphoton ionization (REMPI) is a technique applied to the spectroscopy of atoms and small molecules. In practice, a tunable laser can be used to access an excited intermediate state. The selection rules associated with a two-photon or other multiphoton photoabsorption are different from the selection rules for a single photon transition. The REMPI technique typically involves a resonant single or multiple photon absorption to an electronically excited intermediate state followed by another photon which ionizes the atom or molecule. The light intensity to achieve a typical multiphoton transition is generally significantly larger than the light intensity to achieve a single photon photoabsorption. Because of this, subsequent photoabsorption is often very likely. An ion and a free electron will result if the photons have imparted enough energy to exceed the ionization threshold energy of the system. In many cases, REMPI provides spectroscopic information that can be unavailable to single photon spectroscopic methods, for example rotational structure in molecules is easily seen with this technique.

A Visible Light Photon Counter (VLPC) is a photon counting photodetector based on impurity-band conduction in arsenic-doped silicon. They have high quantum efficiency and are able to detect single photons in the visible range of the electromagnetic spectrum. The ability to count the exact number of photons detected is extremely important for quantum key distribution.

<span class="mw-page-title-main">Transition-edge sensor</span>

A transition-edge sensor (TES) is a type of cryogenic energy sensor or cryogenic particle detector that exploits the strongly temperature-dependent resistance of the superconducting phase transition.

<span class="mw-page-title-main">Microchannel plate detector</span> Detection single parties and photons

A microchannel plate (MCP) is used to detect single particles and photons. It is closely related to an electron multiplier, as both intensify single particles or photons by the multiplication of electrons via secondary emission. Because a microchannel plate detector has many separate channels, it can provide spatial resolution.

<span class="mw-page-title-main">Photon counting</span> Counting photons using a single-photon detector

Photon counting is a technique in which individual photons are counted using a single-photon detector (SPD). A single-photon detector emits a pulse of signal for each detected photon. The counting efficiency is determined by the quantum efficiency and the system's electronic losses.

<span class="mw-page-title-main">Switching noise jitter</span> Type of interference created by switching-mode power supplies

Switching Noise Jitter (SNJ) is the aggregation of variability of noise events in the time-domain on the supply bias of an electronic system, in particular with a voltage regulated supply bias incorporated with closed-loop (feedback) control, for instance, SMPS. SNJ is measurable using real-time spectral histogram analysis and expressed as a rate of occurrence in percentage. The existence of SNJ was firstly demonstrated and termed by TransSiP Inc in 2016 and 2017 at the Applied Power Electronics Conference (APEC), and reviewed with experts at Tektronix prior to be featured as a case study published by Tektronix. The discovery of SNJ was also featured in multiple articles published by Planet Analog magazine and EDN Network. Difficult to filter using conventional LC networks due to variability in both time and frequency domains, SNJ can introduce random errors in analog to digital conversion, affecting both data integrity and system performance in digital communications and location-based services

A photomultiplier is a device that converts incident photons into an electrical signal.

Time-domain diffuse optics or time-resolved functional near-infrared spectroscopy is a branch of functional near-Infrared spectroscopy which deals with light propagation in diffusive media. There are three main approaches to diffuse optics namely continuous wave (CW), frequency domain (FD) and time-domain (TD). Biological tissue in the range of red to near-infrared wavelengths are transparent to light and can be used to probe deep layers of the tissue thus enabling various in vivo applications and clinical trials.

References

  1. Mascotto, Massimo (17 February 2011), Silicon Photomultiplier Technology at STMicroelectronics (PDF), retrieved 25 July 2020
  2. A new generation, long distance ranging Time-of-Flight sensor based on ST’s FlightSense™ technology