PIMEX

Last updated

PIMEX is one of the so-called video exposure monitoring methods which are used in occupational hygiene practise since their introduction in the mid-1980s. [1] The name PIMEX is an acronym from the words PIcture Mix EXposure, and implies that the method is based on mixing pictures, in this case from a video camera, with data on a worker’s exposure to some agent. The main idea of the method is to make invisible hazards in the work environment visible and in this manner facilitate the reduction of hazards in workplaces.

Contents

Invention

The method PIMEX was originally developed in Sweden during the 1980s by Gunnar Rosén and Ing-Marie Andersson. [2] [3] Similar technique was developed also in USA where NIOSH researchers described a technique using a video overlay board and computer program to display, in real-time or after recording of data and video on tape, the measured value as a bar graph and the picture on the computer screen. [4] [5]

Video exposure monitoring has thereafter been further developed and used in a number of countries. [6] [7] [8] [9]

The workers’ knowledge of risks associated with their tasks and, perhaps more importantly, how these risks can be controlled, is essential to improve their health. [1] Applications of the PIMEX methods are various, focusing on work task analysis, training and risk communication, encouraging worker participation in and motivation for improvements in the workplace environment.

Use

PIMEX is used in many different countries. It is a widely used in the Netherlands for risk communication in the field of chemical exposure and it has been proven to be a very strong communication tool. There are more than 100 professional videos made with PIMEx for many different industries. They are all free available. The Dutch Ministry of social affairs developed a new promo video of PIMEX. It demonstrates the function and use of PIMEX with various examples from working environments.

There are a number of situations where PIMEX has been used:

In the Netherlands, the method is available to small and medium enterprises by the use of a half day workplace analysis or simple videos can be made. [10]

PIMEX is also used to visualize noise, heat stress, nanoparticles, electromagnetic fields and physical load. In the Netherlands there are also videos available that are made for employees in health services who are working with a mobile patient hoist. Such mobile hoists are used to reduce physical overload. The video shows the difference in exposure between using the hoist in the wrong and the correct way, for example when the wheels are in the wrong or right position.

Related Research Articles

Isocyanate salt or ester of isocyanic acid

Isocyanate is the functional group with the formula R−N=C=O. Organic compounds that contain an isocyanate group are referred to as isocyanates. An organic compound with two isocyanate groups is known as a diisocyanate. Diisocyanates are manufactured for the production of polyurethanes, a class of polymers.

Personal protective equipment Equipment designed to help protect an individual from hazards

Personal protective equipment (PPE) is protective clothing, helmets, goggles, or other garments or equipment designed to protect the wearer's body from injury or infection. The hazards addressed by protective equipment include physical, electrical, heat, chemicals, biohazards, and airborne particulate matter. Protective equipment may be worn for job-related occupational safety and health purposes, as well as for sports and other recreational activities. "Protective clothing" is applied to traditional categories of clothing, and "protective gear" applies to items such as pads, guards, shields, or masks, and others. PPE suits can be similar in appearance to a cleanroom suit.

National Institute for Occupational Safety and Health US federal government agency for preventing work-related health and safety problems

The National Institute for Occupational Safety and Health is the United States federal agency responsible for conducting research and making recommendations for the prevention of work-related injury and illness. NIOSH is part of the Centers for Disease Control and Prevention (CDC) within the U.S. Department of Health and Human Services. Its current director is John Howard.

Occupational noise is the amount of acoustic energy received by an employee's auditory system when they are working in the industry. Occupational noise, or industrial noise, is often a term used in occupational safety and health, as sustained exposure can cause permanent hearing damage.

Occupational hygiene Management of workplace health hazards

Occupational hygiene is the anticipation, recognition, evaluation, control, and confirmation of protection from hazards at work that may result in injury, illness, or affect the well being of workers. These hazards or stressors are typically divided into the categories biological, chemical, physical, ergonomic and psychosocial. The risk of a health effect from a given stressor is a function of the hazard multiplied by the exposure to the individual or group. For chemicals, the hazard can be understood by the dose response profile most often based on toxicological studies or models. Occupational hygienists work closely with toxicologists for understanding chemical hazards, physicists for physical hazards, and physicians and microbiologists for biological hazards Environmental and occupational hygienists are considered experts in exposure science and exposure risk management. Depending on an individual's type of job, a hygienist will apply their exposure science expertise for the protection of workers, consumers and/or communities.

The threshold limit value (TLV) of a chemical substance is believed to be a level to which a worker can be exposed day after day for a working lifetime without adverse effects. Strictly speaking, TLV is a reserved term of the American Conference of Governmental Industrial Hygienists (ACGIH). TLVs issued by the ACGIH are the most widely accepted occupational exposure limits both in the United States and most other countries. However, it is sometimes loosely used to refer to other similar concepts used in occupational health and toxicology, such as acceptable daily intake (ADI) and tolerable daily intake (TDI). Concepts such as TLV, ADI, and TDI can be compared to the no-observed-adverse-effect level (NOAEL) in animal testing, but whereas a NOAEL can be established experimentally during a short period, TLV, ADI, and TDI apply to human beings over a lifetime and thus are harder to test empirically and are usually set at lower levels. TLVs, along with biological exposure indices (BEIs), are published annually by the ACGIH.

Occupational hazard Hazard experienced in the workplace

An occupational hazard is a hazard experienced in the workplace. Occupational hazards can encompass many types of hazards, including chemical hazards, biological hazards (biohazards), psychosocial hazards, and physical hazards. In the United States, the National Institute for Occupational Safety and Health (NIOSH) conduct workplace investigations and research addressing workplace health and safety hazards resulting in guidelines. The Occupational Safety and Health Administration (OSHA) establishes enforceable standards to prevent workplace injuries and illnesses. In the EU a similar role is taken by EU-OSHA.

A recommended exposure limit (REL) is an occupational exposure limit that has been recommended by the United States National Institute for Occupational Safety and Health. The REL is a level that NIOSH believes would be protective of worker safety and health over a working lifetime if used in combination with engineering and work practice controls, exposure and medical monitoring, posting and labeling of hazards, worker training and personal protective equipment. To formulate these recommendations, NIOSH evaluates all known and available medical, biological, engineering, chemical, trade, and other information. Although not legally enforceable limits, RELS are transmitted to the Occupational Safety and Health Administration (OSHA) or the Mine Safety and Health Administration (MSHA) of the U.S. Department of Labor for use in promulgating legal standards.

Control banding is a qualitative or semi-quantitative risk assessment and management approach to promoting occupational health and safety. It is intended to minimize worker exposures to hazardous chemicals and other risk factors in the workplace and to help small businesses by providing an easy-to-understand, practical approach to controlling hazardous exposures at work.

An occupational exposure limit is an upper limit on the acceptable concentration of a hazardous substance in workplace air for a particular material or class of materials. It is typically set by competent national authorities and enforced by legislation to protect occupational safety and health. It is an important tool in risk assessment and in the management of activities involving handling of dangerous substances. There are many dangerous substances for which there are no formal occupational exposure limits. In these cases, hazard banding or control banding strategies can be used to ensure safe handling.

The Institute of Occupational Medicine (IOM) was founded in 1969 by the National Coal Board (NCB) as an independent charity in the UK and retains this charitable purpose and status today. The "Institute" has a subsidiary, IOM Consulting Limited, which became fully independent in 1990 and now celebrates its 25th year within the IOM Group as an independent consultancy and also the commercial part of the IOM organization. It specializes in asbestos surveys and services, occupational hygiene services, nanotechnology safety, laboratory analysis and expert witness consulting services. IOM is therefore one of the UK's major independent "not for profit" centres of scientific excellence in the fields of environmental health, occupational hygiene and occupational safety. Its mission is to benefit those at work and in the community by providing quality research, consultancy, surveys, analysis and training and by maintaining an independent, impartial position as an international centre of excellence.

Physical hazard Hazard due to a physical agent

A physical hazard is an agent, factor or circumstance that can cause harm without contact. They can be classified as type of occupational hazard or environmental hazard. Physical hazards include ergonomic hazards, radiation, heat and cold stress, vibration hazards, and noise hazards. Engineering controls are often used to mitigate physical hazards.

Occupational safety and health Field concerned with the safety, health and welfare of people at work

Occupational safety and health (OSH), also commonly referred to as health and safety, occupational health and safety (OHS), occupational health, or occupational safety, is a multidisciplinary field concerned with the safety, health, and welfare of people at work. These terms also refer to the goals of this field, so their use in the sense of this article was originally an abbreviation of occupational safety and health program/department etc.

Occupational hearing loss hearing loss caused by occupational hazards

Occupational hearing loss (OHL) is hearing loss that occurs as a result of occupational hazards, such as excessive noise and ototoxic chemicals. Noise is a common workplace hazard, and recognized as the risk factor for noise-induced hearing loss and tinnitus, but it is not the only risk factor that can result in a work-related hearing loss. Also, noise-induced hearing loss can result from exposures that are not restricted to the occupational setting.

Dustiness is the tendency of particles to become airborne in response to a mechanical or aerodynamic stimulus. Dustiness is affected by the particle shape, size, and inherent electrostatic forces. Dustiness increases the risk of inhalation exposure.

Occupational heat stress is the net load to which a worker is exposed from the combined contributions of metabolic heat, environmental factors, and clothing worn which results in an increase in heat storage in the body. Heat stress can result in heat-related illnesses, such as heat stroke, hyperthermia, heat exhaustion, heat cramps or heat rashes. Although heat exhaustion is less severe, hyperthermia is a medical emergency and requires emergency treatment, which if not provided can even lead to death.

Occupational epidemiology is a subdiscipline of epidemiology that focuses on investigations of workers and the workplace. Occupational epidemiologic studies examine health outcomes among workers, and their potential association with conditions in the workplace including noise, chemicals, heat, or radiation, or work organization such as schedules.

Engineering controls are strategies designed to protect workers from hazardous conditions by placing a barrier between the worker and the hazard or by removing a hazardous substance through air ventilation. Engineering controls involve a physical change to the workplace itself, rather than relying on workers' behavior or requiring workers to wear protective clothing.

Occupational exposure banding process

Occupational exposure banding, also known as hazard banding, is a process intended to quickly and accurately assign chemicals into specific categories (bands), each corresponding to a range of exposure concentrations designed to protect worker health. These bands are assigned based on a chemical’s toxicological potency and the adverse health effects associated with exposure to the chemical. The output of this process is an occupational exposure band (OEB). Occupational exposure banding has been used by the pharmaceutical sector and by some major chemical companies over the past several decades to establish exposure control limits or ranges for new or existing chemicals that do not have formal OELs. Furthermore, occupational exposure banding has become an important component of the Hierarchy of Occupational Exposure Limits (OELs).

There are unique occupational health issues in the casino industry. The most common are from cancers resulting from exposure to second-hand tobacco smoke, and musculoskeletal injury (MSI) from repetitive motion injuries while running table games over many hours.

References

  1. 1 2 Rosen, G.; Andersson, I.M.; Walsh, P.T.; Clark, R.D.R.; Säämänen, Arto; Heinonen, Kimmo; Riipinen, H.; Pääkkönen, R.. 2005. A review of video exposure monitoring as an occupational hygiene tool. Annals of Occupational Hygiene, vol. 49, 3, ss. 201–217 doi : 10.1093/annhyg/meh110.
  2. Rosén G, Lundström S. (1987) Concurrent video filming and measuring for visualization of exposure. Am Indust Hyg Ass J; 48: 688–92.
  3. Rosén G, Andersson I-M. (1989) Video filming and pollution measurement as a teaching aid in reducing exposure to airborne pollutants. Ann Occ Hyg; 33: 137–44.
  4. Gressel M, Heitbrink WA, McGlothlin JD et al. (1987) Realtime, integrated, and ergonomic analysis of dust exposure during manual materials handling. Appl Ind Hyg J; 2: 108–13.
  5. Gressel MG, Heitbrink WA, McGlothlin JD et al. (1988) Advantages of real-time data acquisition for exposure assessment. Appl Ind Hyg; 3: 316–20
  6. Walsh PT, Clark RDR, Flaherty S et al.(2000) Computer-aided video exposure monitoring. Appl Occup Environ Hyg; 15: 48–56.
  7. Martin P, Brand F, Servais M. (1999) Correlation of the exposure to a pollutant with a task-related action or workplace: the CAPTIV system. Ann Occup Hyg; 43: 221–33.
  8. Kovein RJ. (1997) Video exposure monitoring at NIOSH: an update. Appl Occup Environ Hyg; 12: 638–41.
  9. Xu F, McGlothlin JD. (2003) Video exposure assessments of solvent exposures in university pharmaceutical laboratories—a pilot study. Chemical Health and Safety; 10: 23–8.
  10. ECTS Archived 2011-07-24 at the Wayback Machine