PKD domain

Last updated
PKD domain
Identifiers
SymbolPKD
Pfam PF00801
InterPro IPR000601
SMART PKD
SCOP2 1b4r / SCOPe / SUPFAM
CDD cd00146

PKD (Polycystic Kidney Disease) domain was first identified in the polycystic kidney disease protein, polycystin-1 (PKD1 gene), and contains an Ig-like fold consisting of a beta-sandwich of seven strands in two sheets with a Greek key topology, although some members have additional strands. [1] Polycystin-1 is a large cell-surface glycoprotein involved in adhesive protein–protein and protein–carbohydrate interactions; however it is not clear if the PKD domain mediates any of these interactions.

PKD domains are also found in other proteins, usually in the extracellular parts of proteins involved in interactions with other proteins. For example, domains with a PKD-type fold are found in archaeal S-layer proteins that protect the cell from extreme environments, [2] and in the human receptor SorCS2. [3]

Human proteins containing this domain

GPNMB; PKD1; PKD1L1; PMEL; SORCS1; SORCS2; SORCS3

Related Research Articles

<span class="mw-page-title-main">Autosomal dominant polycystic kidney disease</span> Medical condition

Autosomal dominant polycystic kidney disease (ADPKD) is one of the most common, life-threatening inherited human disorders and the most common hereditary kidney disease. It is associated with large interfamilial and intrafamilial variability, which can be explained to a large extent by its genetic heterogeneity and modifier genes. It is also the most common of the inherited cystic kidney diseases — a group of disorders with related but distinct pathogenesis, characterized by the development of renal cysts and various extrarenal manifestations, which in case of ADPKD include cysts in other organs, such as the liver, seminal vesicles, pancreas, and arachnoid membrane, as well as other abnormalities, such as intracranial aneurysms and dolichoectasias, aortic root dilatation and aneurysms, mitral valve prolapse, and abdominal wall hernias. Over 50% of patients with ADPKD eventually develop end stage kidney disease and require dialysis or kidney transplantation. ADPKD is estimated to affect at least one in every 1000 individuals worldwide, making this disease the most common inherited kidney disorder with a diagnosed prevalence of 1:2000 and incidence of 1:3000-1:8000 in a global scale.

<span class="mw-page-title-main">Chromosome 4</span> Human chromosome

Chromosome 4 is one of the 23 pairs of chromosomes in humans. People normally have two copies of this chromosome. Chromosome 4 spans more than 186 million base pairs and represents between 6 and 6.5 percent of the total DNA in cells.

<span class="mw-page-title-main">Beta-propeller</span> Toroid protein structure formed from beta sheets

In structural biology, a beta-propeller (β-propeller) is a type of all-β protein architecture characterized by 4 to 8 highly symmetrical blade-shaped beta sheets arranged toroidally around a central axis. Together the beta-sheets form a funnel-like active site.

<span class="mw-page-title-main">Immunoglobulin superfamily</span> Large protein superfamily of cell surface and soluble proteins

The immunoglobulin superfamily (IgSF) is a large protein superfamily of cell surface and soluble proteins that are involved in the recognition, binding, or adhesion processes of cells. Molecules are categorized as members of this superfamily based on shared structural features with immunoglobulins ; they all possess a domain known as an immunoglobulin domain or fold. Members of the IgSF include cell surface antigen receptors, co-receptors and co-stimulatory molecules of the immune system, molecules involved in antigen presentation to lymphocytes, cell adhesion molecules, certain cytokine receptors and intracellular muscle proteins. They are commonly associated with roles in the immune system. Otherwise, the sperm-specific protein IZUMO1, a member of the immunoglobulin superfamily, has also been identified as the only sperm membrane protein essential for sperm-egg fusion.

<span class="mw-page-title-main">DNA clamp</span>

A DNA clamp, also known as a sliding clamp, is a protein complex that serves as a processivity-promoting factor in DNA replication. As a critical component of the DNA polymerase III holoenzyme, the clamp protein binds DNA polymerase and prevents this enzyme from dissociating from the template DNA strand. The clamp-polymerase protein–protein interactions are stronger and more specific than the direct interactions between the polymerase and the template DNA strand; because one of the rate-limiting steps in the DNA synthesis reaction is the association of the polymerase with the DNA template, the presence of the sliding clamp dramatically increases the number of nucleotides that the polymerase can add to the growing strand per association event. The presence of the DNA clamp can increase the rate of DNA synthesis up to 1,000-fold compared with a nonprocessive polymerase.

<span class="mw-page-title-main">Fibrocystin</span>

Fibrocystin is a large, receptor-like protein that is thought to be involved in the tubulogenesis and/or maintenance of duct-lumen architecture of epithelium. FPC associates with the primary cilia of epithelial cells and co-localizes with the Pkd2 gene product polycystin-2 (PC2), suggesting that these two proteins may function in a common molecular pathway.

<span class="mw-page-title-main">LSm</span>

In molecular biology, LSm proteins are a family of RNA-binding proteins found in virtually every cellular organism. LSm is a contraction of 'like Sm', because the first identified members of the LSm protein family were the Sm proteins. LSm proteins are defined by a characteristic three-dimensional structure and their assembly into rings of six or seven individual LSm protein molecules, and play a large number of various roles in mRNA processing and regulation.

<span class="mw-page-title-main">TGF beta receptor 2</span>

Transforming growth factor, beta receptor II (70/80kDa) is a TGF beta receptor. TGFBR2 is its human gene.

TRPP is a family of transient receptor potential ion channels which when mutated can cause polycystic kidney disease.

<span class="mw-page-title-main">Polycystin 1</span>

Polycystin 1 is a protein that in humans is encoded by the PKD1 gene. Mutations of PKD1 are associated with most cases of autosomal dominant polycystic kidney disease, a severe hereditary disorder of the kidneys characterised by the development of renal cysts and severe kidney dysfunction.

<span class="mw-page-title-main">Polycystin 2</span>

Polycystin-2 is a protein that in humans is encoded by the PKD2 gene.

<span class="mw-page-title-main">CD2AP</span> Protein

CD2-associated protein is a protein that in humans is encoded by the CD2AP gene.

<span class="mw-page-title-main">PKD2L1</span>

Polycystic kidney disease 2-like 1 protein also known as transient receptor potential polycystic 2 is a protein that in humans is encoded by the PKD2L1 gene.

<span class="mw-page-title-main">Polycystic kidney disease</span> Congenital disorder of urinary system

Polycystic kidney disease is a genetic disorder in which the renal tubules become structurally abnormal, resulting in the development and growth of multiple cysts within the kidney. These cysts may begin to develop in utero, in infancy, in childhood, or in adulthood. Cysts are non-functioning tubules filled with fluid pumped into them, which range in size from microscopic to enormous, crushing adjacent normal tubules and eventually rendering them non-functional as well.

<span class="mw-page-title-main">Autosomal recessive polycystic kidney disease</span> Medical condition

Autosomal recessive polycystic kidney disease (ARPKD) is the recessive form of polycystic kidney disease. It is associated with a group of congenital fibrocystic syndromes. Mutations in the PKHD1 cause ARPKD.

<span class="mw-page-title-main">TRPP3</span>

Polycystic kidney disease 2-like 2 protein (PKD2L2) also known as transient receptor potential polycystic 5 (TRPP5) is a protein that in humans is encoded by the PKD2L2 gene.

<span class="mw-page-title-main">GAIN domain</span>

The GAIN domain is a protein domain found in a number of cell surface receptors, including adhesion-GPCRs and polycystic kidney disease proteins PKD1 and PKD2. The domain is involved in the self-cleavage of these transmembrane receptors, and has been shown to be crucial for their function. Point mutations within the GAIN domain of PKD1 and GPR56 are known to cause polycystic kidney disease and polymicrogyria, respectively.

The Polycystin Cation Channel (PCC) Family consists of several transporters ranging in size from 500 to over 4000 amino acyl residues (aas) in length and exhibiting between 5 and 18 transmembrane segments (TMSs). This family is a constituent of the Voltage-Gated Ion Channel (VIC) Superfamily. These transporters generally catalyze the export of cations. A representative list of proteins belonging to the PCC family can be found in the Transporter Classification Database.

<span class="mw-page-title-main">Polycystic kidney disease 3 (autosomal dominant)</span> Protein in humans

Polycystic kidney disease 3 is a protein that in humans is encoded by the PKD3 gene.

RVxP motif is a protein motif involved in localizing proteins into cilia.

References

  1. Bycroft M, Bateman A, Clarke J, Hamill SJ, Sandford R, Thomas RL, Chothia C (1999). "The structure of a PKD domain from polycystin-1: implications for polycystic kidney disease". EMBO J. 18 (2): 297–305. doi:10.1093/emboj/18.2.297. PMC   1171124 . PMID   9889186.
  2. Joachimiak A, Springer TA, Zhang RG, Wang JH, Liu JH, Jing H, Takagi J, Lindgren S (2002). "Archaeal surface layer proteins contain beta propeller, PKD, and beta helix domains and are related to metazoan cell surface proteins". Structure. 10 (10): 1453–1464. doi: 10.1016/S0969-2126(02)00840-7 . PMID   12377130.
  3. Hermans-Borgmeyer I, Hampe W, Schaller HC, Rezgaoui M (2001). "The genes for the human VPS10 domain-containing receptors are large and contain many small exons". Hum. Genet. 108 (6): 529–36. doi:10.1007/s004390100504. PMID   11499680. S2CID   23375354.
This article incorporates text from the public domain Pfam and InterPro: IPR000601