PRICKLE1

Last updated
PRICKLE1
Identifiers
Aliases PRICKLE1 , EPM1B, RILP, prickle planar cell polarity protein 1
External IDs OMIM: 608500 MGI: 1916034 HomoloGene: 17686 GeneCards: PRICKLE1
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001144881
NM_001144882
NM_001144883
NM_153026

NM_001033217
NM_001364846

RefSeq (protein)

NP_001138353
NP_001138354
NP_001138355
NP_694571

NP_001028389
NP_001351775

Location (UCSC) Chr 12: 42.46 – 42.59 Mb Chr 15: 93.4 – 93.49 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Prickle planar cell polarity protein 1 is a protein that in humans is encoded by the PRICKLE1 gene. [5]

Contents

Function

This gene encodes a nuclear receptor that may be a negative regulator of the Wnt/beta-catenin signaling pathway. The encoded protein localizes to the nuclear membrane and has been implicated in the nuclear trafficking of the transcription repressors REST/NRSF and REST4. Mutations in this gene have been linked to progressive myoclonus epilepsy. Alternate splicing results in multiple transcript variants. A pseudogene of this gene is found on chromosome 3.

Related Research Articles

The Wnt signaling pathways are a group of signal transduction pathways which begin with proteins that pass signals into a cell through cell surface receptors. The name Wnt is a portmanteau created from the names Wingless and Int-1. Wnt signaling pathways use either nearby cell-cell communication (paracrine) or same-cell communication (autocrine). They are highly evolutionarily conserved in animals, which means they are similar across animal species from fruit flies to humans.

Prickle is also known as REST/NRSF-interacting LIM domain protein, which is a putative nuclear translocation receptor. Prickle is part of the non-canonical Wnt signaling pathway that establishes planar cell polarity. A gain or loss of function of Prickle1 causes defects in the convergent extension movements of gastrulation. In epithelial cells, Prickle2 establishes and maintains cell apical/basal polarity. Prickle1 plays an important role in the development of the nervous system by regulating the movement of nerve cells.

<span class="mw-page-title-main">Lymphoid enhancer-binding factor 1</span> Protein-coding gene in the species Homo sapiens

Lymphoid enhancer-binding factor 1 (LEF1) is a protein that in humans is encoded by the LEF1 gene. It is a member of T cell factor/lymphoid enhancer factor (TCF/LEF) family.

<span class="mw-page-title-main">Frizzled-2</span> Protein-coding gene in the species Homo sapiens

Frizzled-2(Fz-2) is a protein that in humans is encoded by the FZD2 gene.

<span class="mw-page-title-main">Frizzled-5</span> Protein-coding gene in the species Homo sapiens

Frizzled-5(Fz-5) is a protein that in humans is encoded by the FZD5 gene.

<span class="mw-page-title-main">Frizzled-3</span> Protein-coding gene in the species Homo sapiens

Frizzled-3(Fz-3) is a protein that in humans is encoded by the FZD3 gene.

<span class="mw-page-title-main">Frizzled-6</span> Protein-coding gene in the species Homo sapiens

Frizzled-6(Fz-6) is a protein that in humans is encoded by the FZD6 gene.

<span class="mw-page-title-main">ZBTB33</span> Protein-coding gene in the species Homo sapiens

Transcriptional regulator Kaiso is a protein that in humans is encoded by the ZBTB33 gene. This gene encodes a transcriptional regulator with bimodal DNA-binding specificity, which binds to methylated CGCG and also to the non-methylated consensus KAISO-binding site TCCTGCNA. The protein contains an N-terminal POZ/BTB domain and 3 C-terminal zinc finger motifs. It recruits the N-CoR repressor complex to promote histone deacetylation and the formation of repressive chromatin structures in target gene promoters. It may contribute to the repression of target genes of the Wnt signaling pathway, and may also activate transcription of a subset of target genes by the recruitment of catenin delta-2 (CTNND2). Its interaction with catenin delta-1 (CTNND1) inhibits binding to both methylated and non-methylated DNA. It also interacts directly with the nuclear import receptor Importin-α2, which may mediate nuclear import of this protein. Alternatively spliced transcript variants encoding the same protein have been identified.

<span class="mw-page-title-main">TCF7</span> Protein-coding gene in the species Homo sapiens

Transcription factor 7 is the gene that in humans encodes for the TCF1 protein.

<span class="mw-page-title-main">ZIC3</span> Protein-coding gene in the species Homo sapiens

ZIC3 is a member of the Zinc finger of the cerebellum (ZIC) protein family.

<span class="mw-page-title-main">DVL3</span> Protein-coding gene in the species Homo sapiens

Segment polarity protein dishevelled homolog DVL-3 is a protein that in humans is encoded by the DVL3 gene.

<span class="mw-page-title-main">Protein chibby homolog 1</span> Protein-coding gene in the species Homo sapiens

Protein chibby homolog 1 is a protein that in humans is encoded by the CBY1 gene.

<span class="mw-page-title-main">WNT3</span> Protein and coding gene in humans

Proto-oncogene protein Wnt-3 is a protein that in humans is encoded by the WNT3 gene.

<span class="mw-page-title-main">WNT9A</span> Protein-coding gene in the species Homo sapiens

Protein Wnt-9a is a protein that in humans is encoded by the WNT9A gene.

<span class="mw-page-title-main">PTK7</span> Protein-coding gene in the species Homo sapiens

Tyrosine-protein kinase-like 7 also known as colon carcinoma kinase 4 (CCK4) is a receptor tyrosine kinase that in humans is encoded by the PTK7 gene.

<span class="mw-page-title-main">Dishevelled</span> Family of proteins

Dishevelled (Dsh) is a family of proteins involved in canonical and non-canonical Wnt signalling pathways. Dsh is a cytoplasmic phosphoprotein that acts directly downstream of frizzled receptors. It takes its name from its initial discovery in flies, where a mutation in the dishevelled gene was observed to cause improper orientation of body and wing hairs. There are vertebrate homologs in zebrafish, Xenopus (Xdsh), mice and humans. Dsh relays complex Wnt signals in tissues and cells, in normal and abnormal contexts. It is thought to interact with the SPATS1 protein when regulating the Wnt Signalling pathway.

<span class="mw-page-title-main">TCF/LEF family</span> Group of genes

The TCF/LEF family is a group of genes that encode transcription factors which bind to DNA through a SOX-like high mobility group domain. They are involved in the Wnt signaling pathway, particularly during embryonic and stem-cell development, but also had been found to play a role in cancer and diabetes. TCF/LEF factors recruit the coactivator beta-catenin to enhancer elements of genes they target. They can also recruit members of the Groucho family of corepressors.

<span class="mw-page-title-main">TCF7L1</span> Protein-coding gene in the species Homo sapiens

Transcription factor 7-like 1, also known as TCF7L1, is a human gene.

<span class="mw-page-title-main">WNT9B</span> Protein-coding gene in the species Homo sapiens

Protein Wnt-9b is a protein that in humans is encoded by the WNT9B gene.

<span class="mw-page-title-main">Prickle planar cell polarity protein 2</span> Protein-coding gene in the species Homo sapiens

Prickle planar cell polarity protein 2 is a protein that in humans is encoded by the PRICKLE2 gene.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000139174 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000036158 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. "Entrez Gene: Prickle planar cell polarity protein 1" . Retrieved 2017-08-08.

Further reading


This article incorporates text from the United States National Library of Medicine, which is in the public domain.