Paneitz operator

Last updated

In the mathematical field of differential geometry, the Paneitz operator is a fourth-order differential operator defined on a Riemannian manifold of dimension n. It is named after Stephen Paneitz, who discovered it in 1983, and whose preprint was later published posthumously in Paneitz 2008. In fact, the same operator was found earlier in the context of conformal supergravity by E. Fradkin and A. Tseytlin in 1982 (Phys Lett B 110 (1982) 117 and Nucl Phys B 1982 (1982) 157 ). It is given by the formula

Contents

where Δ is the Laplace–Beltrami operator, d is the exterior derivative, δ is its formal adjoint, V is the Schouten tensor, J is the trace of the Schouten tensor, and the dot denotes tensor contraction on either index. Here Q is the scalar invariant

where Δ is the positive Laplacian. In four dimensions this yields the Q-curvature.

The operator is especially important in conformal geometry, because in a suitable sense it depends only on the conformal structure. Another operator of this kind is the conformal Laplacian. But, whereas the conformal Laplacian is second-order, with leading symbol a multiple of the LaplaceBeltrami operator, the Paneitz operator is fourth-order, with leading symbol the square of the LaplaceBeltrami operator. The Paneitz operator is conformally invariant in the sense that it sends conformal densities of weight 2 n/2 to conformal densities of weight 2 n/2. Concretely, using the canonical trivialization of the density bundles in the presence of a metric, the Paneitz operator P can be represented in terms of a representative the Riemannian metric g as an ordinary operator on functions that transforms according under a conformal change gΩ2g according to the rule

The operator was originally derived by working out specifically the lower-order correction terms in order to ensure conformal invariance. Subsequent investigations have situated the Paneitz operator into a hierarchy of analogous conformally invariant operators on densities: the GJMS operators.

The Paneitz operator has been most thoroughly studied in dimension four where it appears naturally in connection with extremal problems for the functional determinant of the Laplacian (via the Polyakov formula; see Branson & Ørsted 1991). In dimension four only, the Paneitz operator is the "critical" GJMS operator, meaning that there is a residual scalar piece (the Q curvature) that can only be recovered by asymptotic analysis. The Paneitz operator appears in extremal problems for the Moser–Trudinger inequality in dimension four as well ( Chang 1999 )

CR Paneitz operator

There is a close connection between 4 dimensional Conformal Geometry and 3 dimensional CR geometry associated with the study of CR manifolds. There is a naturally defined fourth order operator on CR manifolds introduced by C. Robin Graham and John Lee that has many properties similar to the classical Paneitz operator defined on 4 dimensional Riemannian manifolds. [1] This operator in CR geometry is called the CR Paneitz operator. The operator defined by Graham and Lee though defined on all odd dimensional CR manifolds, is not known to be conformally covariant in real dimension 5 and higher. The conformal covariance of this operator has been established in real dimension 3 by Kengo Hirachi. It is always a non-negative operator in real dimension 5 and higher. Here unlike changing the metric by a conformal factor as in the Riemannian case discussed above, one changes the contact form on the CR 3 manifold by a conformal factor. Non-negativity of the CR Paneitz operator in dimension 3 is a CR invariant condition as proved below. This follows by the conformal covariant properties of the CR Paneitz operator first observed by Kengo Hirachi. [2] Furthermore, the CR Paneitz operator plays an important role in obtaining the sharp eigenvalue lower bound for Kohn's Laplacian. This is a result of Sagun Chanillo, Hung-Lin Chiu and Paul C. Yang. [3] This sharp eigenvalue lower bound is the exact analog in CR Geometry of the famous André Lichnerowicz lower bound for the Laplace–Beltrami operator on compact Riemannian manifolds. It allows one to globally embed, compact, strictly pseudoconvex, abstract CR manifolds into . More precisely, the conditions in [3] to embed a CR manifold into are phrased CR invariantly and non-perturbatively. There is also a partial converse of the above result where the authors, J. S. Case, S. Chanillo, P. Yang, obtain conditions that guarantee when embedded, compact CR manifolds have non-negative CR Paneitz operators. [4] The formal definition of the CR Paneitz operator on CR manifolds of real dimension three is as follows( the subscript is to remind the reader that this is a fourth order operator)

denotes the Kohn Laplacian which plays a fundamental role in CR Geometry and several complex variables and was introduced by Joseph J. Kohn. One may consult The tangential Cauchy–Riemann complex (Kohn Laplacian, Kohn–Rossi complex) for the definition of the Kohn Laplacian. Further, denotes the Webster-Tanaka Torsion tensor and the covariant derivative of the function with respect to the Webster-Tanaka connection. Accounts of the Webster-Tanaka, connection, Torsion and curvature tensor may be found in articles by John M. Lee and Sidney M. Webster. [5] [6] There is yet another way to view the CR Paneitz operator in dimension 3. John M. Lee constructed a third order operator which has the property that the kernel of consists of exactly the CR pluriharmonic functions (real parts of CR holomorphic functions). [5] The Paneitz operator displayed above is exactly the divergence of this third order operator . The third order operator is defined as follows:

Here is the Webster-Tanaka torsion tensor. The derivatives are taken using the Webster-Tanaka connection and is the dual 1-form to the CR-holomorphic tangent vector that defines the CR structure on the compact manifold. Thus sends functions to forms. The divergence of such an operator thus will take functions to functions. The third order operator constructed by J. Lee only characterizes CR pluriharmonic functions on CR manifolds of real dimension three.

Hirachi's covariant transformation formula for on three dimensional CR manifolds is as follows. Let the CR manifold be , where is the contact form and the CR structure on the kernel of that is on the contact planes. Let us transform the background contact form by a conformal transformation to . Note this new contact form obtained by a conformal change of the old contact form or background contact form, has not changed the kernel of . That is and have the same kernel, i.e. the contact planes have remained unchanged. The CR structure has been kept unchanged. The CR Paneitz operator for the new contact form is now seen to be related to the CR Paneitz operator for the contact form by the formula of Hirachi:

Next note the volume forms on the manifold satisfy

Using the transformation formula of Hirachi, it follows that,

Thus we easily conclude that:

is a CR invariant. That is the integral displayed above has the same value for different contact forms describing the same CR structure .

The operator is a real self-adjoint operator. On CR manifolds like where the Webster-Tanaka torsion tensor is zero, it is seen from the formula displayed above that only the leading terms involving the Kohn Laplacian survives. Next from the tensor commutation formulae given in [5], one can easily check that the operators commute when the Webster-Tanaka torsion tensor vanishes. More precisely one has

where

Thus are simultaneously diagonalizable under the zero torsion assumption. Next note that and have the same sequence of eigenvalues that are also perforce real. Thus we conclude from the formula for that CR structures having zero torsion have CR Paneitz operators that are non-negative. The article [4] among other things shows that real ellipsoids in carry a CR structure inherited from the complex structure of whose CR Paneitz operator is non-negative. This CR structure on ellipsoids has non-vanishing Webster-Tanaka torsion. Thus [4] provides the first examples of CR manifolds where the CR Paneitz operator is non-negative and the Torsion tensor too does not vanish. Since we have observed above that the CR Paneitz is the divergence of an operator whose kernel is the pluriharmonic functions, it also follows that the kernel of the CR Paneitz operator contains all CR Pluriharmonic functions. So the kernel of the CR Paneitz operator in sharp contrast to the Riemannian case, has an infinite dimensional kernel. Results on when the kernel is exactly the pluriharmonic functions, the nature and role of the supplementary space in the kernel etc., may be found in the article cited as [4] below.

One of the principal applications of the CR Paneitz operator and the results in [3] are to the CR analog of the Positive Mass theorem due to Jih-Hsin Cheng, Andrea Malchiodi and Paul C. Yang. [7] This allows one to obtain results on the CR Yamabe problem.

More facts related to the role of the CR Paneitz operator in CR geometry can be obtained from the article CR manifold.

See also

Related Research Articles

In mathematics, the Laplace operator or Laplacian is a differential operator given by the divergence of the gradient of a scalar function on Euclidean space. It is usually denoted by the symbols , (where is the nabla operator), or . In a Cartesian coordinate system, the Laplacian is given by the sum of second partial derivatives of the function with respect to each independent variable. In other coordinate systems, such as cylindrical and spherical coordinates, the Laplacian also has a useful form. Informally, the Laplacian Δf (p) of a function f at a point p measures by how much the average value of f over small spheres or balls centered at p deviates from f (p).

Superspace is the coordinate space of a theory exhibiting supersymmetry. In such a formulation, along with ordinary space dimensions x, y, z, ..., there are also "anticommuting" dimensions whose coordinates are labeled in Grassmann numbers rather than real numbers. The ordinary space dimensions correspond to bosonic degrees of freedom, the anticommuting dimensions to fermionic degrees of freedom.

<span class="mw-page-title-main">Curvature of Riemannian manifolds</span>

In mathematics, specifically differential geometry, the infinitesimal geometry of Riemannian manifolds with dimension greater than 2 is too complicated to be described by a single number at a given point. Riemann introduced an abstract and rigorous way to define curvature for these manifolds, now known as the Riemann curvature tensor. Similar notions have found applications everywhere in differential geometry of surfaces and other objects. The curvature of a pseudo-Riemannian manifold can be expressed in the same way with only slight modifications.

In geometry, the line element or length element can be informally thought of as a line segment associated with an infinitesimal displacement vector in a metric space. The length of the line element, which may be thought of as a differential arc length, is a function of the metric tensor and is denoted by .

In mathematics, certain systems of partial differential equations are usefully formulated, from the point of view of their underlying geometric and algebraic structure, in terms of a system of differential forms. The idea is to take advantage of the way a differential form restricts to a submanifold, and the fact that this restriction is compatible with the exterior derivative. This is one possible approach to certain over-determined systems, for example, including Lax pairs of integrable systems. A Pfaffian system is specified by 1-forms alone, but the theory includes other types of example of differential system. To elaborate, a Pfaffian system is a set of 1-forms on a smooth manifold.

In mathematics, a Killing vector field, named after Wilhelm Killing, is a vector field on a Riemannian manifold that preserves the metric. Killing fields are the infinitesimal generators of isometries; that is, flows generated by Killing fields are continuous isometries of the manifold. More simply, the flow generates a symmetry, in the sense that moving each point of an object the same distance in the direction of the Killing vector will not distort distances on the object.

In differential geometry, the Laplace–Beltrami operator is a generalization of the Laplace operator to functions defined on submanifolds in Euclidean space and, even more generally, on Riemannian and pseudo-Riemannian manifolds. It is named after Pierre-Simon Laplace and Eugenio Beltrami.

In mathematics, Cartan's equivalence method is a technique in differential geometry for determining whether two geometrical structures are the same up to a diffeomorphism. For example, if M and N are two Riemannian manifolds with metrics g and h, respectively, when is there a diffeomorphism

In theoretical physics, Nordström's theory of gravitation was a predecessor of general relativity. Strictly speaking, there were actually two distinct theories proposed by the Finnish theoretical physicist Gunnar Nordström, in 1912 and 1913 respectively. The first was quickly dismissed, but the second became the first known example of a metric theory of gravitation, in which the effects of gravitation are treated entirely in terms of the geometry of a curved spacetime.

In mathematical physics and differential geometry, a gravitational instanton is a four-dimensional complete Riemannian manifold satisfying the vacuum Einstein equations. They are so named because they are analogues in quantum theories of gravity of instantons in Yang–Mills theory. In accordance with this analogy with self-dual Yang–Mills instantons, gravitational instantons are usually assumed to look like four dimensional Euclidean space at large distances, and to have a self-dual Riemann tensor. Mathematically, this means that they are asymptotically locally Euclidean hyperkähler 4-manifolds, and in this sense, they are special examples of Einstein manifolds. From a physical point of view, a gravitational instanton is a non-singular solution of the vacuum Einstein equations with positive-definite, as opposed to Lorentzian, metric.

In physics, a sigma model is a field theory that describes the field as a point particle confined to move on a fixed manifold. This manifold can be taken to be any Riemannian manifold, although it is most commonly taken to be either a Lie group or a symmetric space. The model may or may not be quantized. An example of the non-quantized version is the Skyrme model; it cannot be quantized due to non-linearities of power greater than 4. In general, sigma models admit (classical) topological soliton solutions, for example, the Skyrmion for the Skyrme model. When the sigma field is coupled to a gauge field, the resulting model is described by Ginzburg–Landau theory. This article is primarily devoted to the classical field theory of the sigma model; the corresponding quantized theory is presented in the article titled "non-linear sigma model".

In mathematics and theoretical physics, zeta function regularization is a type of regularization or summability method that assigns finite values to divergent sums or products, and in particular can be used to define determinants and traces of some self-adjoint operators. The technique is now commonly applied to problems in physics, but has its origins in attempts to give precise meanings to ill-conditioned sums appearing in number theory.

In mathematics, a CR manifold, or Cauchy–Riemann manifold, is a differentiable manifold together with a geometric structure modeled on that of a real hypersurface in a complex vector space, or more generally modeled on an edge of a wedge.

<span class="mw-page-title-main">Conformally flat manifold</span>

A (pseudo-)Riemannian manifold is conformally flat if each point has a neighborhood that can be mapped to flat space by a conformal transformation.

<span class="mw-page-title-main">Heat kernel</span> Fundamental solution to the heat equation, given boundary values

In the mathematical study of heat conduction and diffusion, a heat kernel is the fundamental solution to the heat equation on a specified domain with appropriate boundary conditions. It is also one of the main tools in the study of the spectrum of the Laplace operator, and is thus of some auxiliary importance throughout mathematical physics. The heat kernel represents the evolution of temperature in a region whose boundary is held fixed at a particular temperature, such that an initial unit of heat energy is placed at a point at time t = 0.

In mathematics, in particular in differential geometry, mathematical physics, and representation theory a Weitzenböck identity, named after Roland Weitzenböck, expresses a relationship between two second-order elliptic operators on a manifold with the same principal symbol. Usually Weitzenböck formulae are implemented for G-invariant self-adjoint operators between vector bundles associated to some principal G-bundle, although the precise conditions under which such a formula exists are difficult to formulate. This article focuses on three examples of Weitzenböck identities: from Riemannian geometry, spin geometry, and complex analysis.

In mathematics and theoretical physics, an invariant differential operator is a kind of mathematical map from some objects to an object of similar type. These objects are typically functions on , functions on a manifold, vector valued functions, vector fields, or, more generally, sections of a vector bundle.

In mathematics, Reidemeister torsion is a topological invariant of manifolds introduced by Kurt Reidemeister for 3-manifolds and generalized to higher dimensions by Wolfgang Franz (1935) and Georges de Rham (1936). Analytic torsion is an invariant of Riemannian manifolds defined by Daniel B. Ray and Isadore M. Singer as an analytic analogue of Reidemeister torsion. Jeff Cheeger and Werner Müller (1978) proved Ray and Singer's conjecture that Reidemeister torsion and analytic torsion are the same for compact Riemannian manifolds.

In differential geometry there are a number of second-order, linear, elliptic differential operators bearing the name Laplacian. This article provides an overview of some of them.

In physics, geometrothermodynamics (GTD) is a formalism developed in 2007 by Hernando Quevedo to describe the properties of thermodynamic systems in terms of concepts of differential geometry.

References

  1. Graham, C. Robin; Lee, John M. (1988). "Smooth Solutions of Degenerate Laplacians on Strictly Pseudo-convex Domains". Duke Mathematical Journal. 57 (3): 697–720. doi:10.1215/S0012-7094-88-05731-6.
  2. Hirachi, Kengo (1993). "Scalar Pseudo-hermitian Invariants and the Szegő kernel on three dimensional CR manifolds". Complex Geometry (Osaka 1990). Lecture Notes in Pure and Applied Mathematics. Vol. 143. New York: Marcel Dekker. pp. 67–76.
  3. Chanillo, Sagun; Chiu, Hung-Lin; Yang, Paul C. (2012). "Embeddability for 3-dimensional CR manifolds and CR Yamabe Invariants". Duke Mathematical Journal. 161 (15): 2909–2921. arXiv: 1007.5020 . doi:10.1215/00127094-1902154. S2CID   304301.
  4. Case, Jeffrey S.; Chanillo, Sagun; Yang, Paul C. (2016). "The CR Paneitz operator and the Stability of CR Pluriharmonic functions". Advances in Mathematics . 287: 109–122. arXiv: 1502.01994 . doi: 10.1016/j.aim.2015.10.002 .
  5. 1 2 Lee, John M. (1988). "Pseudo-Einstein Structures on CR manifolds". American Journal of Mathematics. 110 (1): 157–178. doi:10.2307/2374543. JSTOR   2374543.
  6. Webster, Sidney M. (1978). "Pseudo-hermitian Structures on a Real Hypersurface". Journal of Differential Geometry. 13: 25–41. doi: 10.4310/jdg/1214434345 .
  7. Cheng, Jih-Hsin; Malchiodi, Andrea; Yang, Paul (21 February 2017). "A Positive Mass theorem in three dimensional Cauchy-Riemann Geometry". Advances in Mathematics . 308: 276–347. arXiv: 1312.7764 . Bibcode:2013arXiv1312.7764C. doi: 10.1016/j.aim.2016.12.012 .