GJMS operator

Last updated

In the mathematical field of differential geometry, the GJMS operators are a family of differential operators, that are defined on a Riemannian manifold. In an appropriate sense, they depend only on the conformal structure of the manifold. The GJMS operators generalize the Paneitz operator and the conformal Laplacian. The initials GJMS are for its discoverers Graham, Jenne, Mason & Sparling (1992).

Properly, the GJMS operator on a conformal manifold of dimension n is a conformally invariant operator between the line bundle of conformal densities of weight kn/2 for k a positive integer

The operators have leading symbol given by a power of the Laplace–Beltrami operator, and have lower order correction terms that ensure conformal invariance.

The original construction of the GJMS operators used the ambient construction of Charles Fefferman and Robin Graham. A conformal density defines, in a natural way, a function on the null cone in the ambient space. The GJMS operator is defined by taking density ƒ of the appropriate weight kn/2 and extending it arbitrarily to a function F off the null cone so that it still retains the same homogeneity. The function ΔkF, where Δ is the ambient Laplace–Beltrami operator, is then homogeneous of degree kn/2, and its restriction to the null cone does not depend on how the original function ƒ was extended to begin with, and so is independent of choices. The GJMS operator also represents the obstruction term to a formal asymptotic solution of the Cauchy problem for extending a weight kn/2 function off the null cone in the ambient space to a harmonic function in the full ambient space.

The most important GJMS operators are the critical GJMS operators. In even dimension n, these are the operators Ln/2 that take a true function on the manifold and produce a multiple of the volume form.

Related Research Articles

Vector calculus or vector analysis is a branch of mathematics concerned with the differentiation and integration of vector fields, primarily in three-dimensional Euclidean space, The term vector calculus is sometimes used as a synonym for the broader subject of multivariable calculus, which spans vector calculus as well as partial differentiation and multiple integration. Vector calculus plays an important role in differential geometry and in the study of partial differential equations. It is used extensively in physics and engineering, especially in the description of electromagnetic fields, gravitational fields, and fluid flow.

In mathematics, the Laplace operator or Laplacian is a differential operator given by the divergence of the gradient of a scalar function on Euclidean space. It is usually denoted by the symbols , (where is the nabla operator), or . In a Cartesian coordinate system, the Laplacian is given by the sum of second partial derivatives of the function with respect to each independent variable. In other coordinate systems, such as cylindrical and spherical coordinates, the Laplacian also has a useful form. Informally, the Laplacian Δf (p) of a function f at a point p measures by how much the average value of f over small spheres or balls centered at p deviates from f (p).

<span class="mw-page-title-main">Differential operator</span> Typically linear operator defined in terms of differentiation of functions

In mathematics, a differential operator is an operator defined as a function of the differentiation operator. It is helpful, as a matter of notation first, to consider differentiation as an abstract operation that accepts a function and returns another function.

In differential geometry, the Ricci curvature tensor, named after Gregorio Ricci-Curbastro, is a geometric object which is determined by a choice of Riemannian or pseudo-Riemannian metric on a manifold. It can be considered, broadly, as a measure of the degree to which the geometry of a given metric tensor differs locally from that of ordinary Euclidean space or pseudo-Euclidean space.

In mathematics, conformal geometry is the study of the set of angle-preserving (conformal) transformations on a space.

<span class="mw-page-title-main">Nonlinear dimensionality reduction</span> Summary of algorithms for nonlinear dimensionality reduction

Nonlinear dimensionality reduction, also known as manifold learning, is any of various related techniques that aim to project high-dimensional data onto lower-dimensional latent manifolds, with the goal of either visualizing the data in the low-dimensional space, or learning the mapping itself. The techniques described below can be understood as generalizations of linear decomposition methods used for dimensionality reduction, such as singular value decomposition and principal component analysis.

In mathematics and quantum mechanics, a Dirac operator is a differential operator that is a formal square root, or half-iterate, of a second-order operator such as a Laplacian. The original case which concerned Paul Dirac was to factorise formally an operator for Minkowski space, to get a form of quantum theory compatible with special relativity; to get the relevant Laplacian as a product of first-order operators he introduced spinors. It was first published in 1928 by Dirac.

In mathematics, the discrete Laplace operator is an analog of the continuous Laplace operator, defined so that it has meaning on a graph or a discrete grid. For the case of a finite-dimensional graph, the discrete Laplace operator is more commonly called the Laplacian matrix.

In differential geometry, the Laplace–Beltrami operator is a generalization of the Laplace operator to functions defined on submanifolds in Euclidean space and, even more generally, on Riemannian and pseudo-Riemannian manifolds. It is named after Pierre-Simon Laplace and Eugenio Beltrami.

In mathematics and theoretical physics, zeta function regularization is a type of regularization or summability method that assigns finite values to divergent sums or products, and in particular can be used to define determinants and traces of some self-adjoint operators. The technique is now commonly applied to problems in physics, but has its origins in attempts to give precise meanings to ill-conditioned sums appearing in number theory.

In mathematics, a CR manifold, or Cauchy–Riemann manifold, is a differentiable manifold together with a geometric structure modeled on that of a real hypersurface in a complex vector space, or more generally modeled on an edge of a wedge.

In conformal geometry, the ambient construction refers to a construction of Charles Fefferman and Robin Graham for which a conformal manifold of dimension n is realized (ambiently) as the boundary of a certain Poincaré manifold, or alternatively as the celestial sphere of a certain pseudo-Riemannian manifold.

In mathematics and theoretical physics, an invariant differential operator is a kind of mathematical map from some objects to an object of similar type. These objects are typically functions on , functions on a manifold, vector valued functions, vector fields, or, more generally, sections of a vector bundle.

In differential geometry there are a number of second-order, linear, elliptic differential operators bearing the name Laplacian. This article provides an overview of some of them.

The Geometry Festival is an annual mathematics conference held in the United States.

Spectral geometry is a field in mathematics which concerns relationships between geometric structures of manifolds and spectra of canonically defined differential operators. The case of the Laplace–Beltrami operator on a closed Riemannian manifold has been most intensively studied, although other Laplace operators in differential geometry have also been examined. The field concerns itself with two kinds of questions: direct problems and inverse problems.

Clifford analysis, using Clifford algebras named after William Kingdon Clifford, is the study of Dirac operators, and Dirac type operators in analysis and geometry, together with their applications. Examples of Dirac type operators include, but are not limited to, the Hodge–Dirac operator, on a Riemannian manifold, the Dirac operator in euclidean space and its inverse on and their conformal equivalents on the sphere, the Laplacian in euclidean n-space and the Atiyah–Singer–Dirac operator on a spin manifold, Rarita–Schwinger/Stein–Weiss type operators, conformal Laplacians, spinorial Laplacians and Dirac operators on SpinC manifolds, systems of Dirac operators, the Paneitz operator, Dirac operators on hyperbolic space, the hyperbolic Laplacian and Weinstein equations.

In the mathematical field of differential geometry, the Paneitz operator is a fourth-order differential operator defined on a Riemannian manifold of dimension n. It is named after Stephen Paneitz, who discovered it in 1983, and whose preprint was later published posthumously in Paneitz 2008. In fact, the same operator was found earlier in the context of conformal supergravity by E. Fradkin and A. Tseytlin in 1982 (Phys Lett B 110 117 and Nucl Phys B 1982 157 ). It is given by the formula

Spectral shape analysis relies on the spectrum of the Laplace–Beltrami operator to compare and analyze geometric shapes. Since the spectrum of the Laplace–Beltrami operator is invariant under isometries, it is well suited for the analysis or retrieval of non-rigid shapes, i.e. bendable objects such as humans, animals, plants, etc.

Charles Robin Graham is professor emeritus of mathematics at the University of Washington, known for a number of contributions to the field of conformal geometry and CR geometry; his collaboration with Charles Fefferman on the ambient construction has been particularly widely cited. The GJMS operators are, in part, named for him. He is a 2012 Fellow of the American Mathematical Society. Graham received his Ph.D. from Princeton University in 1981, under the direction of Elias Stein.

References