Laplace operators in differential geometry

Last updated

In differential geometry there are a number of second-order, linear, elliptic differential operators bearing the name Laplacian . This article provides an overview of some of them.

Contents

Connection Laplacian

The connection Laplacian, also known as the rough Laplacian, is a differential operator acting on the various tensor bundles of a manifold, defined in terms of a Riemannian- or pseudo-Riemannian metric. When applied to functions (i.e. tensors of rank 0), the connection Laplacian is often called the Laplace–Beltrami operator. It is defined as the trace of the second covariant derivative:

where T is any tensor, is the Levi-Civita connection associated to the metric, and the trace is taken with respect to the metric. Recall that the second covariant derivative of T is defined as

Note that with this definition, the connection Laplacian has negative spectrum. On functions, it agrees with the operator given as the divergence of the gradient.

If the connection of interest is the Levi-Civita connection one can find a convenient formula for the Laplacian of a scalar function in terms of partial derivatives with respect to a coordinate system:

where is a scalar function, is absolute value of the determinant of the metric (absolute value is necessary in the pseudo-Riemannian case, e.g. in General Relativity) and denotes the inverse of the metric tensor.

Hodge Laplacian

The Hodge Laplacian, also known as the Laplace–de Rham operator, is a differential operator acting on differential forms. (Abstractly, it is a second order operator on each exterior power of the cotangent bundle.) This operator is defined on any manifold equipped with a Riemannian- or pseudo-Riemannian metric.

where d is the exterior derivative or differential and δ is the codifferential. The Hodge Laplacian on a compact manifold has nonnegative spectrum.

The connection Laplacian may also be taken to act on differential forms by restricting it to act on skew-symmetric tensors. The connection Laplacian differs from the Hodge Laplacian by means of a Weitzenböck identity.

Bochner Laplacian

The Bochner Laplacian is defined differently from the connection Laplacian, but the two will turn out to differ only by a sign, whenever the former is defined. Let M be a compact, oriented manifold equipped with a metric. Let E be a vector bundle over M equipped with a fiber metric and a compatible connection, . This connection gives rise to a differential operator

where denotes smooth sections of E, and T*M is the cotangent bundle of M. It is possible to take the -adjoint of , giving a differential operator

The Bochner Laplacian is given by

which is a second order operator acting on sections of the vector bundle E. Note that the connection Laplacian and Bochner Laplacian differ only by a sign:

Lichnerowicz Laplacian

The Lichnerowicz Laplacian [1] is defined on symmetric tensors by taking to be the symmetrized covariant derivative. The Lichnerowicz Laplacian is then defined by , where is the formal adjoint. The Lichnerowicz Laplacian differs from the usual tensor Laplacian by a Weitzenbock formula involving the Riemann curvature tensor, and has natural applications in the study of Ricci flow and the prescribed Ricci curvature problem.

Conformal Laplacian

On a Riemannian manifold, one can define the conformal Laplacian as an operator on smooth functions; it differs from the Laplace–Beltrami operator by a term involving the scalar curvature of the underlying metric. In dimension n  3, the conformal Laplacian, denoted L, acts on a smooth function u by

where Δ is the Laplace-Beltrami operator (of negative spectrum), and R is the scalar curvature. This operator often makes an appearance when studying how the scalar curvature behaves under a conformal change of a Riemannian metric. If n  3 and g is a metric and u is a smooth, positive function, then the conformal metric

has scalar curvature given by

More generally, the action of the conformal Laplacian of on smooth functions φ can be related to that of the conformal Laplacian of g via the transformation rule

Comparisons

Below is a table summarizing the various Laplacian operators, including the most general vector bundle on which they act, and what structure is required for the manifold and vector bundle. All of these operators are second order, linear, and elliptic.

Laplacianvector bundlerequired structure, base manifoldrequired structure, vector bundlespectrum
Hodgedifferential formsmetricinduced metric and connectionpositive
Connectiontensorsmetricinduced metric and connectionnegative
Bochnerany vector bundlemetricfiber metric, compatible connectionpositive
Lichnerowiczsymmetric 2-tensorsmetricinduced connection ?
Conformalfunctionsmetricnonevaries

See also

Related Research Articles

In geometry, a geodesic is a curve representing in some sense the shortest path (arc) between two points in a surface, or more generally in a Riemannian manifold. The term also has meaning in any differentiable manifold with a connection. It is a generalization of the notion of a "straight line".

<span class="mw-page-title-main">Riemann curvature tensor</span> Tensor field in Riemannian geometry

In the mathematical field of differential geometry, the Riemann curvature tensor or Riemann–Christoffel tensor is the most common way used to express the curvature of Riemannian manifolds. It assigns a tensor to each point of a Riemannian manifold. It is a local invariant of Riemannian metrics which measures the failure of the second covariant derivatives to commute. A Riemannian manifold has zero curvature if and only if it is flat, i.e. locally isometric to the Euclidean space. The curvature tensor can also be defined for any pseudo-Riemannian manifold, or indeed any manifold equipped with an affine connection.

In mathematics, the Laplace operator or Laplacian is a differential operator given by the divergence of the gradient of a scalar function on Euclidean space. It is usually denoted by the symbols , (where is the nabla operator), or . In a Cartesian coordinate system, the Laplacian is given by the sum of second partial derivatives of the function with respect to each independent variable. In other coordinate systems, such as cylindrical and spherical coordinates, the Laplacian also has a useful form. Informally, the Laplacian Δf (p) of a function f at a point p measures by how much the average value of f over small spheres or balls centered at p deviates from f (p).

In differential geometry, the Ricci curvature tensor, named after Gregorio Ricci-Curbastro, is a geometric object which is determined by a choice of Riemannian or pseudo-Riemannian metric on a manifold. It can be considered, broadly, as a measure of the degree to which the geometry of a given metric tensor differs locally from that of ordinary Euclidean space or pseudo-Euclidean space.

In the mathematical field of Riemannian geometry, the scalar curvature is a measure of the curvature of a Riemannian manifold. To each point on a Riemannian manifold, it assigns a single real number determined by the geometry of the metric near that point. It is defined by a complicated explicit formula in terms of partial derivatives of the metric components, although it is also characterized by the volume of infinitesimally small geodesic balls. In the context of the differential geometry of surfaces, the scalar curvature is twice the Gaussian curvature, and completely characterizes the curvature of a surface. In higher dimensions, however, the scalar curvature only represents one particular part of the Riemann curvature tensor.

In mathematics, the covariant derivative is a way of specifying a derivative along tangent vectors of a manifold. Alternatively, the covariant derivative is a way of introducing and working with a connection on a manifold by means of a differential operator, to be contrasted with the approach given by a principal connection on the frame bundle – see affine connection. In the special case of a manifold isometrically embedded into a higher-dimensional Euclidean space, the covariant derivative can be viewed as the orthogonal projection of the Euclidean directional derivative onto the manifold's tangent space. In this case the Euclidean derivative is broken into two parts, the extrinsic normal component and the intrinsic covariant derivative component.

<span class="mw-page-title-main">Affine connection</span> Construct allowing differentiation of tangent vector fields of manifolds

In differential geometry, an affine connection is a geometric object on a smooth manifold which connects nearby tangent spaces, so it permits tangent vector fields to be differentiated as if they were functions on the manifold with values in a fixed vector space. Connections are among the simplest methods of defining differentiation of the sections of vector bundles.

In differential geometry, the Cotton tensor on a (pseudo)-Riemannian manifold of dimension n is a third-order tensor concomitant of the metric. The vanishing of the Cotton tensor for n = 3 is necessary and sufficient condition for the manifold to be conformally flat. By contrast, in dimensions n ≥ 4, the vanishing of the Cotton tensor is necessary but not sufficient for the metric to be conformally flat; instead, the corresponding necessary and sufficient condition in these higher dimensions is the vanishing of the Weyl tensor, while the Cotton tensor just becomes a constant times the divergence of the Weyl tensor. For n < 3 the Cotton tensor is identically zero. The concept is named after Émile Cotton.

In mathematics and quantum mechanics, a Dirac operator is a differential operator that is a formal square root, or half-iterate, of a second-order operator such as a Laplacian. The original case which concerned Paul Dirac was to factorise formally an operator for Minkowski space, to get a form of quantum theory compatible with special relativity; to get the relevant Laplacian as a product of first-order operators he introduced spinors. It was first published in 1928.

In differential geometry, the Laplace–Beltrami operator is a generalization of the Laplace operator to functions defined on submanifolds in Euclidean space and, even more generally, on Riemannian and pseudo-Riemannian manifolds. It is named after Pierre-Simon Laplace and Eugenio Beltrami.

<span class="mw-page-title-main">Torsion tensor</span> Manner of characterizing a twist or screw of a moving frame around a curve

In differential geometry, the notion of torsion is a manner of characterizing a twist or screw of a moving frame around a curve. The torsion of a curve, as it appears in the Frenet–Serret formulas, for instance, quantifies the twist of a curve about its tangent vector as the curve evolves. In the geometry of surfaces, the geodesic torsion describes how a surface twists about a curve on the surface. The companion notion of curvature measures how moving frames "roll" along a curve "without twisting".

In mathematics, a metric connection is a connection in a vector bundle E equipped with a bundle metric; that is, a metric for which the inner product of any two vectors will remain the same when those vectors are parallel transported along any curve. This is equivalent to:

In mathematics, in particular in differential geometry, mathematical physics, and representation theory a Weitzenböck identity, named after Roland Weitzenböck, expresses a relationship between two second-order elliptic operators on a manifold with the same principal symbol. Usually Weitzenböck formulae are implemented for G-invariant self-adjoint operators between vector bundles associated to some principal G-bundle, although the precise conditions under which such a formula exists are difficult to formulate. This article focuses on three examples of Weitzenböck identities: from Riemannian geometry, spin geometry, and complex analysis.

In Riemannian geometry and pseudo-Riemannian geometry, the Gauss–Codazzi equations are fundamental formulas which link together the induced metric and second fundamental form of a submanifold of a Riemannian or pseudo-Riemannian manifold.

The Yamabe problem refers to a conjecture in the mathematical field of differential geometry, which was resolved in the 1980s. It is a statement about the scalar curvature of Riemannian manifolds:

Let (M,g) be a closed smooth Riemannian manifold. Then there exists a positive and smooth function f on M such that the Riemannian metric fg has constant scalar curvature.

<span class="mw-page-title-main">Differential geometry of surfaces</span> The mathematics of smooth surfaces

In mathematics, the differential geometry of surfaces deals with the differential geometry of smooth surfaces with various additional structures, most often, a Riemannian metric. Surfaces have been extensively studied from various perspectives: extrinsically, relating to their embedding in Euclidean space and intrinsically, reflecting their properties determined solely by the distance within the surface as measured along curves on the surface. One of the fundamental concepts investigated is the Gaussian curvature, first studied in depth by Carl Friedrich Gauss, who showed that curvature was an intrinsic property of a surface, independent of its isometric embedding in Euclidean space.

The Lichnerowicz formula is a fundamental equation in the analysis of spinors on pseudo-Riemannian manifolds. In dimension 4, it forms a piece of Seiberg–Witten theory and other aspects of gauge theory. It is named after noted mathematicians André Lichnerowicz who proved it in 1963, and Roland Weitzenböck. The formula gives a relationship between the Dirac operator and the Laplace–Beltrami operator acting on spinors, in which the scalar curvature appears in a natural way. The result is significant because it provides an interface between results from the study of elliptic partial differential equations, results concerning the scalar curvature, and results on spinors and spin structures.

In the mathematical field of differential geometry, the Paneitz operator is a fourth-order differential operator defined on a Riemannian manifold of dimension n. It is named after Stephen Paneitz, who discovered it in 1983, and whose preprint was later published posthumously in Paneitz 2008. In fact, the same operator was found earlier in the context of conformal supergravity by E. Fradkin and A. Tseytlin in 1982 (Phys Lett B 110 117 and Nucl Phys B 1982 157 ). It is given by the formula

Lagrangian field theory is a formalism in classical field theory. It is the field-theoretic analogue of Lagrangian mechanics. Lagrangian mechanics is used to analyze the motion of a system of discrete particles each with a finite number of degrees of freedom. Lagrangian field theory applies to continua and fields, which have an infinite number of degrees of freedom.

References

  1. Chow, Bennett; Lu, Peng; Ni, Lei (2006), Hamilton's Ricci flow, Graduate Studies in Mathematics, vol. 77, Providence, R.I.: American Mathematical Society, ISBN   978-0-8218-4231-7, MR   2274812, ISBN   978-0-8218-4231-7